On conjugation families

By Masahiko MIYAMOTO (Received February 12, 1976)

1. Introduction.

In his paper [2], Goldschmidt has proved a generalization of Alperin's theorem in [1]. The purpose of this paper is to give another proof of his result in [2], namely, to show that his family defined in [2] is a conjugation family.

Let p be a prime, G be a finite group, $Syl_p(G)$ denote the set of Sylow p-subgroups of G, and P be an element of $Syl_p(G)$. Let $\mathcal S$ be the set of all pairs (H, T) such that H is a nontrivial subgroup in P and T is a subgroup in $N_G(H)$.

Our notation corresponds to that of Alperin [1], Goldschmidt [2], and Glauberman [3]. Let \mathcal{F} be a subset of \mathcal{S} , H be a subgroup of P, and L be a finite group.

- a) Suppose that A and B are nonempty subsets of P and $g \in G$. We say that A is \mathscr{F} -conjugate to B via g if there exist elements $(H_1, T_1), \dots, (H_n, T_n)$ in \mathscr{F} and g_1, \dots, g_n in G such that $g_i \in T_i (i=1, \dots, n), A^g = B$, where $g = g_1 \dots g_n$, and $A \subseteq H$ and $A^{g_1 \dots g_i} \subseteq H_{i+1} (i=1, \dots, n-1)$.
- b) We say that \mathscr{F} is a conjugation family (for P in G) if it has the following property: whenever A and B are nonempty subsets of P and $g \in G$ and $A^g = B$, then A is \mathscr{F} -conjugate to B via g.
- c) We say that H is a tame intersection (in P) if $H=P\cap Q$ for some $Q\in Syl_p(G)$ and $N_P(H)\in Syl_p(N_G(H))$. In particular, there is a Sylow p-subgroup R of G such that $N_R(H)\in Syl_p(N_G(H))$ and $P\cap R=H$.
- d) We say that L is p-isolated if, for some $S \in Syl_p(L)$, $\langle N_L(E) : 1 \neq E \leq S \rangle$ is a nontrivial proper subgroup of L. In particular, if L is p-isolated, then there exists S_1 in $Syl_p(L)$ such that $S \cap S_1 = 1$.

THEOREM A.

For each $(H, N_{G}(H)) \in \mathcal{S}$, we assign a normal subgroup K_{H} of $N_{G}(H)$. Let \mathcal{F} be the set of all pairs $(H, T) \in \mathcal{S}$ satisfying the following conditions i), ii), iii), and iv).

- i) H is a tame intersection in P.
- ii) H=P or the factor group $N_G(H)/H$ is p-isolated.