A counter example of Gross' star theorem

By Yukio NAGASAKA

(Received June 15, 1976)

1. Introduction.

Let R be an open Riemann surface. Let w=f(p) be a meromorphic function on the sufface R. We denote by Φ_f the covering surface generated by the inverse function of w=f(p) over the extended w-plane. Let $q_0 \in \Phi_f$ be a regular point on Φ_f lying over the basic point $w_0 = f(p_0) \neq \infty$ and let l_{θ} be the longest segment on Φ_f that starts from q_0 , consists of only regular points of Φ_f and lies over the half straight line $\arg(w-w_0)$ $=\theta \ (0 \le \theta < 2\pi)$ on the w-plane. Here a regular point of Φ_f is a point of Φ_f not being an algebraic branch point. If l_{θ} has finite length, then l_{θ} is said to be a singular segment with its argument θ of Φ_f . The set $\Omega = \bigcup_{0 \le \theta < 2\pi} l_{\theta}$ is clearly a domain and is called a Gross' star region with the center q_0 on Φ_f . We call the set $S_{\Omega} = \{e^{i\theta} | l_{\theta}$ is singular} the singular set of Ω . Since the set $S_n = \{e^{i\theta} | \text{the length of } l_{\theta} \le n\}$ is a closed set on the unit circle $\Gamma = \{|w| = 1\}$ and $S_{\Omega} = \bigcup_{n=1}^{\infty} S_n, S_{\Omega}$ is an F_{σ} set on Γ .

If for any Gross' star region Ω on Φ_f the linear measure $(dm = d\theta)$ of S_g equals zero, then we say that the function f(p) or Φ_f has the Gross' property. Further, if any meromorphic function on R has the Gross' property, then we say that the Riemann surface R has the Gross' property. W. Gross [1] proved that $R = \{|z| < \infty\}$ has the Gross' property. And M. Tsuji [cf. 5] extended this Gross' theorem in the following: If R is a domain on the z-plane and the boundary of R is of logarithmic capacity zero, then R has the Gross' property. And Z. Yûjôbô [cf. 5] proved a Riemann surface $R \in O_g$ has the Gross' property. And Z. Kuramochi [2], [3] proved that there exists a Riemann surface $R \in O_{AB} - O_g$ on the z-plane such that R has not the Gross' property.

Further Z. Kuramochi considered the next K. Noshiro's problem: Is the singular set of any Gross' star region of a covering surface belonging to O_g a set of capacity zero? Let H be an F_σ set on Γ . If there exists a sequence of closed sets $F_n(n=1, 2, \cdots)$ such that $H = \bigcup_{n=1}^{\infty} F_n$ and $F_n \cap \overline{H-F_n}$ $= \phi$ for every n, then the F_σ set H is called a discrete F_σ set. Z. Kuramochi