Remarks on relatively flat modules

By Kenji NISHIDA

(Received June 21, 1976)

Introduction

Let R be a ring and I be an idempotent ideal of R. Put $\mathscr{T} = \{_{\mathbb{R}}M; IM = M\}$, $\mathscr{T} = \{_{\mathbb{R}}M; IM = 0\}$, and $\mathscr{C} = \{_{\mathbb{R}}M; Ann_{\mathcal{M}} I = 0\}$. Then $(\mathscr{T}, \mathscr{T})$, $(\mathscr{T}, \mathscr{C})$ is a TTF-theory over the category of all left R-modules. Since I is an ideal, we can define a TTF-theory over the category of all right R-modules in the same way. We denote it $(\mathscr{T}', \mathscr{T}')$, $(\mathscr{T}', \mathscr{C}')$.

Bland calls a left *R*-module *M* relatively flat if, for any exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of right *R*-modules such that $C \in \mathscr{F}'$, a sequence $0 \rightarrow A \otimes M \rightarrow B \otimes M \rightarrow C \otimes M \rightarrow 0$ is exact [1]. In this paper we call such a module *I*-flat.

It is well known that a flat module is characterized by the purity in the sense of Cohn. We shall define the *I*-purity and give the similar characterization of the *I*-flatness.

In section 2, we investigate the *I*-flatness of R/I-modules. We give the characterization of a ring which has the property that each *I*-flat module is codivisible with respect to $(\mathcal{T}, \mathcal{F})$.

Throughout this paper, all rings are associative with unit and all modules are unital.

The reader is referred to [5] about the torsion theories.

1. On *I*-purity

It is well known that the purity in the sense of Cohn and the flatness are closely related. We shall show that the similar relation holds between the *I*-purity and the *I*-flatness.

DEFINITION 1-1. We call an exact sequence $0 \rightarrow L \rightarrow X \rightarrow M \rightarrow 0$ of left R-modules I-pure if, for each $A \in \mathcal{F}'$, a sequence $0 \rightarrow A \otimes L \rightarrow A \otimes X \rightarrow A \otimes M$ $\rightarrow 0$ is exact.

We call a submodule U of V I-pure if the induced sequence $0 \rightarrow U \rightarrow V \rightarrow V/U \rightarrow 0$ is I-pure.

THEOREM 1-2. The following conditions are equivalent for a left R-module M.

(1) M is I-flat.