Bochner-Minlos' theorem on infinite dimensional spaces

By Yasuji TAKAHASHI

(Received May 10, 1976)

§1. Introduction

In [2], Dao-Xing has shown that the following:

THEOREM A. Let H and G be real separable Hilbert spaces such that H is a linear subspace of G and the inclusion mapping T from H into G is continuous. Let \mathfrak{B} denote the totality of weak Borel sets in G, and \mathfrak{F} the totality of weak Borel sets in the conjugate space H* of H. Then, the following conditions are equivalent.

(1) T is a Hilbert-Schmidt operator from H into G.

(2) There exists a H-quasi-invariant finite measure (non-trivial) on (G, \mathfrak{B}) .

(3) For any positive definite continuous function f on G with f(0)=1, there exists a unique probability measure μ on (H^*, \mathfrak{F}) such that, for any $x \in H$,

$$f(x) = \int_{H^*} e^{ix^*(x)} d\mu(x^*).$$

In [20], the author has proven the following result. This is a generalization of Theorem A.

THEOREM B. Let Φ be a separable σ -Hilbert space, with the inner products $(\varphi_1, \varphi_2)_n^{\phi}$, and let Ψ be a linear subspace of Φ , and suppose that Ψ itself is a complete separable σ -Hilbert space with respect to the inner products $(\psi_1, \psi_2)_n^{\phi}$. Also, suppose that the inclusion mapping T from Ψ into Φ is continuous. For each n, let Φ_n denote the completion of Φ with respect to the inner products $(\varphi_1, \varphi_2)_n^{\phi}$, and Ψ_n denote the completion of ϕ with respect to the inner products $(\psi_1, \psi_2)_n^{\phi}$, respectively. Then, the following conditions are equivalent.

(1) T is a Hilbert-Schmidt operator from Ψ into Φ in σ -Hilbert spaces. Namely, for any m, there exists n such that T is a Hilbert-Schmidt operator from Ψ_n into Φ_m .

(2) For any n, there exists a Ψ -quasi-invariant finite measure (non-trivial) on (Φ_n, \mathfrak{B}_n) .

(3) For any positive definite continuous function L on Φ with L(0)=1, there exists a unique probability measure μ on (Ψ^*, \mathfrak{F}) such that