A relation between the F. and M. Riesz theorem and the structure of LCA groups

By Hiroshi OTAKI

(Received November 25, 1976)

§1. Introduction

Let G be a locally compact Abelian group and M(G) the usual Banach algebra of all complex bounded regular measures on G.

Let $L^{1}(G)$ be a set of all functions intergrable on G with respect to the Haar measure dx.

Suppose Γ is a *LCA* group. We shall call Γ is a topological ordered group or simply ordered group if there exists a closed semigroup P of Γ such that (i) $P \cup (-P) = \Gamma$ and (ii) $P \cap (-P) = \{0\}$. Next we shall say that Γ is an algebraically ordered group if there exists a semigroup P such that (i) $P \cup (-P) = \Gamma$ and (ii) $P \cap (-P) = \{0\}$. [(1)].

Suppose $\Gamma = \hat{G}$ (the dual group of G) is an algebraically ordered group. A measure $\mu \in M(G)$ is said to be of analytic type if $\hat{\mu}(\gamma) = \int_{G} (-x, \gamma) d\mu$ (x)=0 for all $\gamma < 0$.

We put $M^{a}(G) = \{ \mu \in M(G) ; \mu \text{ is of analytic type} \}.$

Call a semigroup S satisfies the condition (*) if $S \cup (-S) = \Gamma$ and $S \cap (-S) = \{0\}$.

Our purpose is to prove the following theorem.

THEOREM 1. Let G be a non-compact LCA group with its dual $\Gamma = \hat{G}$ is algebraically ordered.

If (I) $M^{a}(G) \subset L^{1}(G)$

(II) for any closed subgroup H of G (but $H \neq G$) M(G/H) has a non-zero analytic measure ($H^{\perp}(annihilator of H)$ becomes naturally an algebraically ordered group.)

then, G=R. And moreover $P=(0,\infty)$ or $(-\infty,0]$, where P is a semigroup which induces algebraically order into Γ .

REMARK 1. In the above theorem the condition (II) cannot be weakened. Indeed, let $F \neq \{0\}$ be a compact torsion-free group and D its dual. We put $G = T \oplus D$, then G is a non-compact LCA group, where T is a circle group.

Since $\hat{D} = F$ is an algebraically ordered group, we can construct a semi-