On Harnack's pseudo-distance

By Hiroshi TANAKA*) (Received December 17, 1976)

1. Introduction and terminology

In this paper we shall give a sufficient condition for which the Harnack's pseudo-distance h_R (denoted by d_R in [5]) on an arbitrary Riemann surface R is a real distance and we shall investigate a relation among the Harnack's pseudo-distance h_R , the Kobayashi's distance d_R ([4]) and the Carathéodory's distance c_R (cf. [4]).

For an arbitrary (open or closed) Riemann surface R, we denote by HP = HP(R) the family of all positive harmonic functions on R. For any $a, b \in R$, we set

$$k_{R}(a,b)=\inf\left\{c\;;\;c^{-1}u(a)\leq u(b)\leq cu(a)\;\;\text{for any}\;\;u\in HP(R)\right\}$$

(Harnack's constant).

It is easy to see that $1 \le k_R(a, b) < \infty$ and $(a, b) \to k_R(a, b)$ is continuous. Furthermore the following properties are easy to see:

$$k_R(a, b) = k_R(b, a)$$
 and $k_R(a, b) \le k_R(a, c) k_R(c, b)$.

The following definition is due to J. Köhn (cf. [2]).

Definition 1. For any $a, b \in R$, we set $h_R(a, b) = \log k_R(a, b)$.

By definition, we see that $(a, b) \rightarrow h_R(a, b)$ is continuous and $R \in O_{HP}$ if and only if $h_R = 0$. Furthermore h_R is a (real) distance if and only if HP(R) separates points of R, i. e., for any $a, b \in R$ $(a \neq b)$, we can find $u \in HP(R)$ with $u(a) \neq u(b)$.

The following theorem is due to J. Köhn [5].

Theorem 1 (An extension of Schwartz-Pick's theorem). Let R, R' be two open Riemann surfaces. If f is an analytic mapping of R into R', then

$$h_R(a,b) \ge h_{R'}(f(a), f(b))$$
 for any $a, b \in R$.

In particular, if HP(R) separates points of R and R' is hyperbolic, then the equality holds if and only if f is an onto conformal mapping.

^{*)} 田 中 博