Fusion and groups admitting an automorphism of prime order fixing a solvable subgroup

By Masahiko Мічамото

(Received April 24, 1976)

1. Introduction.

In this paper, we prove the following theorem :

THEOREM 1. Let G be a finite group. Assume that G admits an automorphism α of order s, s a prime. Assume further that $C_G(\alpha)$ is a (solvable) $\{2, 3, s\}'$ -group. Then G is solvable.

This is a generalization of a theorem of B. Rickman [7], where he took up the case that $C_G(\alpha)$ is a cyclic q-group for some prime $q \ge 5$ distinct from s.

Since $C_{G}(\alpha)$ is a s'-group, G is a s'-group. Hence, it is well known that $\langle \alpha \rangle$ leaves invariant a Sylow q-subgroup for each prime divisor q of the order of G. Since $C_{G}(\alpha)$ is of odd order, $C_{G}(\alpha)$ is solvable by the wellknown result of Feit-Thompson [3]. The proof of Theorem 1 depends on the analysis of the fusion in G. Therefore, we need the following theorems: (For the definitions and notations, see § 2.)

THEOREM 2. Let G be a finite group and W_1, \dots, W_n be conjugacy functors for a prime p. Assume that $\{W_1, \dots, W_n\}$ controls p-fusion in every p-local of G. Then $\{W_1, \dots, W_n\}$ controls p-fusion in G.

THEOREM 3. Let G be a finite group and W_1, \dots, W_n be conjugacy functors for a prime p such that $W_i(P) \supseteq Z(P)$ for each i and each p-group P. Assume that $\{W_1, \dots, W_n\}$ controls p-fusion in every p-constrained plocal of G, then $\{W_1, \dots, W_n, Z\}$ controls p-fusion in G.

These theorems are generalizations of a well-known theorem of Alperin-Gorenstein [2].

COROLLARY 1. Let W_1 and W_2 be conjugacy functors satisfying $W_1 \supseteq Z$ (i=1, 2). Assume that $N = N_N(W_1(P_0)) N_N(W_2(P_0)) O_{p'}(N)$ for every pconstrained p-local N of a finite group G and a Sylow p-subgroup P_0 of N. Then $\{W_1, W_2, Z\}$ controls p-fusion in G.

COROLLARY 2. Assume that G is S_4 -free and $Z(S) \leq N_G(J(S))$ for a Sylow 2-subgroup S of G. Then $N_G(Z(S))$ controls 2-fusion in G. In par-