Parametrices for pseudo-differential equations with double characteristics II.

By Kazuhiro Yamamoto

(Received October 6, 1975)

1. Introduction.

In our previous paper [11] we constructed parametrices for some double characteristic pseudo-differential operators, whose characteristic sets are closed conic manifolds of codimension 2 in the cotangent space. In this paper we shall show that the condition of Theorem 1.2 in [11] is necessary and sufficient condition for existence of parametrices.

In order to describe the result more precisely we must recall some notations and hypothese. Let X be a paracompact C^{∞} manifold of dimension n and $T^{*}(X) \backslash 0$ be the cotangential space minus the zero section. $P(x, D)$ is a properly supported classical pseudo-differential operator on X of order m. We denote the principal symbol of P by $p_{m}(x, \xi) \in C^{\infty}\left(T^{*}(X) \backslash 0\right)$. For arbitrary $C^{\infty}\left(T^{*}(X) \backslash 0\right)$ functions f and g we denote the Poisson bracket of f and g by $\{f, g\}$ and the Hamilton vector field of f by H_{f}. For a nonnegative integer k and a connected closed conic non-involutory submanifold Σ of $T^{*}(X) \backslash 0$ with $\operatorname{codim} \Sigma=2$, we use the notations $M^{m, k}(\Sigma, X)$ and σ (P) for $P \in M^{m, k}(\Sigma, X)$ when k is odd. These notations are defined in definition 1.1 of [11].

We consider the following properly supported pseudo-differential operator $L(x, D)$ with double characteristics given by

$$
\begin{equation*}
L(x, D)=(P \cdot Q)(x, D)+R(x, D) . \tag{1.1}
\end{equation*}
$$

Here $P \in M^{m_{1}, k}(\Sigma, X), Q \in M^{m_{2}, k}(\Sigma, X)$ and $R \in M^{m_{1}+m_{2}-1, k-1}(\Sigma, X)$.
In the following theorem we write $A \equiv B$ for operators A and $B ; \mathscr{V}^{\prime}$ $(X) \rightarrow \mathscr{Q}^{\prime}(X)$ if $A-B$ is an integral operator with the C^{∞}-kernel. We also write $\operatorname{diag}(V)=\{(\rho, \rho) ; \rho \in V\} \subset\left(T^{*}(X) \backslash 0\right) \times\left(T^{*}(X) \backslash 0\right)$ for any conic subset V of $T^{*}(X) \backslash 0$. Our statement is the following

ThEOREM. Let $L(x, D)$ be a double characteristic pseudo-differential operator defined by (1.1), where k is an odd integer and $\sigma(P)=1, \sigma(Q)=$ -1. We assume that $\left(H_{p_{m_{1}}}\right)^{l} q_{m_{2}}(x, \xi)=0$ on Σ for $l=1, \cdots, k-1$ and $\left(H_{p_{m_{1}}}\right)^{l}$ $r_{m_{1}+m_{2}-1}(x, \xi)=0$ on Σ for $l=1, \cdots, k-2$ where $k>1$. Then the following statements are equivalent.

