On measurable norms and abstract Wiener spaces

Ву Үаѕијі Таканаѕні

(Received September 17, 1976)

§1. Introduction

In [4], H. Kuo has shown that the following:

THEOREM A. Let H be a real separable Hilbert space with norm $||\cdot||_{H}$, and $||\cdot||$ be a continuous Hilbertian norm on H. Then the following conditions are equivalent.

(1) $||\cdot||$ is measurable.

(2) There exists a one-to-one Hilbert-Schmidt operator T of H such that $||x|| = ||Tx||_H$ for $x \in H$.

In general, if $||\cdot||$ be a measurable norm (not necessarily Hilbertian one), there is a compact operator K of H such that $||x|| \leq ||Kx||_H$ for $x \in H$. The above theorem shows that if a measurable norm $||\cdot||$ be a Hilbertian one, then the operator K can be taken to be a Hilbert-Schmidt operator. However, if a measurable norm $||\cdot||$ be not a Hilbertian one, then this is not necessarily true. The counterexample can be found in [4].

The purpose of the present paper is to show that under the suitable conditions of the norm $||\cdot||$, Theorem A can be extended to a non-Hilbertian case. Throughout the paper, we assume that linear spaces are separable with real coefficients.

§ 2. Basic definitions and well known results

1°. *p*-absolutely summing operators and $(*)_p$ -conditions $(1 \le p < \infty)$

Let E and F be Banach spaces.

A sequence $\{x_i\}$ with values in E is called weakly p-summable if for all $x^* \in E^*$, the sequence $\{x^*(x_i)\} \in l_p$.

A sequence $\{x_i\}$ with values in E is called absolutely *p*-summable if the sequence $\{||x_i||\} \in l_p$.

DEFINITION 2.1.1. A linear operator T from E into F is called p-absolutely summing if for each $\{x_i\} \subset E$ which is weakly p-summable, $\{T(x_i)\} \subset F$ is absolutely p-summable.

We shall say "absolutely summing" instead of "1-absolutely summing".