On a certain change of affine connections on an almost quaternion manifold

By Shigeyoshi FUJIMURA

(Received November 13, 1976)

§1. Introduction

Let (M, V) be an almost quaternion manifold^v of dimension 4 m (≥ 8), i.e., a manifold M which admits a 3-dimensional vector bundle V consisting of tensors of type (1, 1) over M satisfying the following condition: In any coordinate neighborhood U of M, there is a local base $\{F, G, H\}$ of V such that

$$\begin{cases} F^2 = G^2 = H^2 = -I, \\ FG = -GF = H, \quad GH = -HG = F, \quad HF = -FH = G \end{cases}$$

where I is an identity tensor field of type (1, 1) on M. Such a local base $\{F, G, H\}$ of V is called a canonical local base of V in U (cf. [2]²). We shall discuss in the local and use this canonical local base of V. For convenience sake, we put $J_1=I$, $J_2=F$, $J_3=G$ and $J_4=H$.

We now consider an affine connection Γ and a curve C = x(t) on an almost quaternion manifold (M, V) satisfying

$$V_{\dot{x}^{(i)}}\dot{x}(t) = \sum_{i=1}^{4} \phi_i(t) J_i \dot{x}(t)$$

where $\dot{x}(t)$ is the vector tangent to C at the point x(t), $\phi_i(t)$ $(i = 1, \dots, 4)$ are certain functions of the parameter t and ∇ is an operator of covariant differentiation with respect to Γ . Such a curve will be called a Q-planar curve. The purpose of this paper is to prove the following theorem conjectured in the previous paper ([1, p. 242]):

THEOREM. In an almost quaternion manifold (M, V) of dimension 4m (≥ 8) , affine connections Γ and $\overline{\Gamma}$ have all Q-planar curves in common if and only if there exist local 1-forms ψ_i $(i=1, \dots, 4)$ on M satisfying

(1)
$$S(X, Y) + S(Y, X) = \sum_{i=1}^{4} \{ \phi_i(X) J_i Y + \phi_i(Y) J_i X \},$$

¹⁾ Throughout this paper, we assume that manifolds, tensor fields, curves and affine connections are differentiable and of class C^{∞} .

²⁾ Numbers in brackets refer to the references at the end of the paper.