On some 4-dimensional Riemannian manifolds satisfying $R(X, Y) \cdot R = 0$

By Kouei SEKIGAWA

(Received October 2, 1976)

1. Introduction.

Let (M, g) be a Riemannian manifold and V be the Riemannian connection. By $T_x(M)$ and Exp_x we denote the tangent space to M at x and the exponential mapping of (M, g) at x. And let R, R_1 and S be the curvature tensor, the Ricci tensor and the scalar curvature of (M, g), respectively. For $X, Y \in T_x(M)$, R(X, Y) operates on the tensor algebra as a derivation at each point $x \in M$. In a locally symmetric space (VR=0), we have

(*) $R(X, Y) \cdot R = 0$ for any point $x \in M$ and $X, Y \in T_x(M)$.

We consider the converse under some additional conditions. If this paper, with respect to this problem, we shall prove

THEOREM A. Let (M, g) be a complete, irreducible 4-dimensional Riemannian manifold of class C^{*} satisfying (*). If the volume of (M, g) is finite, then (M, g) is locally symmetric.

COROLLARY A. Let (M, g) be a compact, irreducible 4-dimensional Riemannian manifold of class C^{**} satisfying (*). Then (M, g) is locally symmetric.

Let R^1 be the Ricci transformation defined by $g(R^1X, Y) = R_1(X, Y)$. In this paper, (M, g) is assumed to be connected, complete and of cleass C^{\bullet} unless otherwise specified.

2. Lemmas.

Let (M, g) be a 4-dimensional complete Riemannian manifold. Assume (*). Let $(\lambda_1, \lambda_2, \lambda_3, \lambda_4)$ be the eigenvalues of the Ricci transformation R^1 at a point $x \in M$. Then, we may have only the following five cases: