On some 4-dimensional Riemannian manifolds satisfying $R(X, Y) \cdot R=0$

By Kouei Sekigawa

(Received October 2, 1976)

1. Introduction.

Let (M, g) be a Riemannian manifold and ∇ be the Riemannian connection. By $T_{x}(M)$ and Exp_{x} we denote the tangent space to M at x and the exponential mapping of (M, g) at x. And let R, R_{1} and S be the curvature tensor, the Ricci tensor and the scalar curvature of (M, g), respectively. For $X, Y \in T_{x}(M), R(X, Y)$ operates on the tensor algebra as a derivation at each point $x \in M$. In a locally symmetric space ($V R=0$), we have (*) $\quad R(X, Y) \cdot R=0$ for any point $x \in M$ and $X, Y \in T_{x}(M)$.
We consider the converse under some additional conditions. If this paper, with respect to this problem, we shall prove

Theorem A. Let (M, g) be a complete, irreducible 4-dimensional Riemannian manifold of class C^{*} satisfying (*). If the volume of (M, g) is finite, then (M, g) is locally symmetric.

Corollary A. Let (M, g) be a compact, irreducible 4-dimensional Riemannian manifold of class C^{ω} satisfying (*). Then (M, g) is locally symmetric.

Let R^{1} be the Ricci transformation defined by $g\left(R^{1} X, Y\right)=R_{1}(X, Y)$. In this paper, (M, g) is assumed to be connected, complete and of cleass C° unless otherwise specified.

2. Lemmas.

Let (M, g) be a 4 -dimensional complete Riemannian manifold. Assume (*). Let ($\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$) be the eigenvalues of the Ricci transformation R^{1} at a point $x \in M$. Then, we may have only the following five cases:
(I) $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\lambda, \quad \lambda \neq 0$,
(II) $\lambda_{1}=\lambda_{2}=\lambda, \quad \lambda_{3}=\lambda_{4}=\mu, \quad \lambda \neq \mu, \quad \lambda, \mu \neq 0$,
(III) $\lambda_{1}=\lambda_{2}=\lambda_{3}^{\prime}=\lambda, \quad \lambda_{4}=0, \quad \lambda \neq 0$,
(IV) $\lambda_{1}=\lambda_{2}=\lambda, \quad \lambda_{3}=\lambda_{4}=0, \quad \lambda \neq 0$,

