A remark on a closed hypersurface with constant second mean curvature in a Riemann space

By Tsunehira KOYANAGI

(Received June 15, 1977)

Introduction. Y. Katsurada ([6]¹⁾, [5]) proved the following two theorems:

THEOREM A. Let V^m be a closed orientable hypersurface in an Einstein space which admits a conformal Killing vector field ξ^i . If

(i) H_1 is constant,

(ii) $N_i \xi^i$ has fixed sign on V^m ,

then every point of V^m is umbilic, where H_1 and N_i denote the first mean curvature of V^m and the covariant component of the unit normal vector to V^m respectively.

THEOREM B. Let V^m be a closed orientable hypersurface in a Riemann space of constant curvature which admits a conformal Killing vector field ξ^i . If

(i) H_{ν} is constant for a fixed ν $(2 \leq \nu \leq m-1)$,

(ii) k_1, k_2, \dots, k_m are positive at each point on V^m ,

(iii) $N_i \xi^i$ has fixed sign on V^m ,

then every point of V^m is umbilic, where k_{α} ($\alpha = 1, 2, \dots, m$) and H_{ν} denote the principal curvature and the ν -th mean curvature of V^m respectively.

The present author [8] proved

THEOREM C. Let V^m be a closed orientable hypersurface in a Riemann space which admits a conformal Killing vector field ξ^i . If

(i) H_2 is constant,

(ii) k_1, k_2, \dots, k_m are positive at each point on V^m ,

(iii) $C^{\alpha}_{\beta,\alpha}^{(2)}=0$ on V^m ,

(iv) $N_i \xi^i$ has fixed sign on V^m ,

then every point of V^m is umbilic.

It is one of the interesting problems for us to find the conditions that

¹⁾ Numbers in brackets refer to the references at the end of the paper.

²⁾ $C_{\alpha\beta}$ are defined by $b_7^{\gamma} b_{\alpha\beta} - b_{\alpha}^{\gamma} b_{7\beta}$, where, $b_{\alpha\beta}$ and $g^{\alpha\beta}$ denoting the covariant component of the second fundamental tensor and the contravariant component of the metric tensor of V^m respectively, $b_7^{\gamma} = b_{\alpha\beta} g^{\alpha\beta}$ and $b_{\alpha}^{\gamma} = b_{\alpha\beta} g^{\beta\gamma}$. And $C^{\alpha}{}_{\beta;\alpha} = C_{\alpha\beta;\gamma} g^{\alpha\gamma}$, where the symbol ";" means the covariant derivative.