A remark on a closed hypersurface with constant second mean curvature in a Riemann space

By Tsunehira Koyanagi

(Received June 15, 1977)

Introduction. Y. Katsurada ([6] $\left.{ }^{1)},[5]\right)$ proved the following two theorems:
Theorem A. Let V^{m} be a closed orientable hypersurface in an Einstein space which admits a conformal Killing vector field ξ^{i}. If
(i) H_{1} is constant,
(ii) $N_{i} \xi^{i}$ has fixed sign on V^{n},
then every point of V^{m} is umbilic, where H_{1} and N_{i} denote the first mean curvature of V^{m} and the covariant component of the unit normal vector to V^{m} respectively.

Theorem B. Let V^{n} be a closed orientable hypersurface in a Riemann space of constant curvature which admits a conformal Killing vector field ξ^{i}. If
(i) H_{ν} is constant for a fixed $\nu(2 \leqq \nu \leqq m-1)$,
(ii) $k_{1}, k_{2}, \cdots, k_{m}$ are positive at each point on V^{m},
(iii) $N_{i} \xi^{i}$ has fixed sign on V^{n},
then every point of V^{m} is umbilic, where $k_{\alpha}(\alpha=1,2, \cdots, m)$ and H_{ν} denote the principal curvature and the ν-th mean curvature of V^{n} respectively.

The present author [8] proved
Theorem C. Let V^{m} be a closed orientable hypersurface in a Riemann space which admits a conformal Killing vector field ξ^{i}. If
(i) H_{2} is constant,
(ii) $k_{1}, k_{2}, \cdots, k_{m}$ are positive at each point on V^{m},
(iii) $C_{\beta, \alpha}^{\alpha}{ }^{2}=0$ on V^{m},
(iv) $N_{i} \xi^{i}$ has fixed sign on V^{n}, then every point of V^{m} is umbilic.

It is one of the interesting problems for us to find the conditions that

1) Numbers in brackets refer to the references at the end of the paper.
2) $C_{\alpha \beta}$ are defined by $b_{\gamma}{ }^{\gamma} b_{\alpha \beta}-b_{\alpha}{ }^{\gamma} b_{\gamma \beta}$, where, $b_{\alpha \beta}$ and $g^{\alpha \beta}$ denoting the covariant component of the second fundamental tensor and the contravariant component of the metric tensor of V^{m} respectively, $b_{\gamma}^{\gamma}=b_{\alpha \beta} g^{\alpha \beta}$ and $b_{\alpha}^{r}=b_{\alpha \beta} g^{\beta r}$. And $C^{\alpha} \beta ; \alpha=C_{\alpha \beta ; r} g^{\alpha \gamma}$, where the symbol ";" means the covariant derivative.
