Higher order monodiffric difference equation

By Shih Tong Tu

(Received April 1, 1977)

1. Introduction. In [1] Berzsenyi has discussed the general solution of the first order monodiffric difference equation. Let D be the first quadrant of the discrete plane, and suppose $a \in D-\{0\}$ and $g \in M(D)$, then the general solution of the monodiffric equation $f^{\prime}(z)-a f(z)=g(z)$ with initial condition $f(0)=c$ is given by the monodiffric function

$$
f(z)=c E(z, a)+\frac{1}{a}[g * E(z, a)] \quad \text { for every } z \in D,
$$

where $E(z, a)$ is the monodiffric exponential function (c.f. [2])

$$
E(z, a)=(1+a)^{x}(1+i a)^{y} \quad \text { for } z=x+i y .
$$

In the sequel, we use the notation $e^{q, z}$ instead of $E(z, a)$.
In this paper, we extend Berzsenyi's results to more general cases, namely, the general solution of the n^{\prime} th order monodiffric linear homogeneous difference equation

$$
\begin{equation*}
F^{(n)}(z)+c_{n-1} F^{(n-1)}(z)+\cdots+c_{1} F^{\prime}(z)+c_{0} F(z)=0, \tag{1.1}
\end{equation*}
$$

where the coefficients $c_{i}(i=0,1, \cdots, n)$ are arbitrary constants.
2. Definition. Let $D=\{z \mid z=x+i y, x$ and y are integers $\}$ and f be a complex-valued function defined on D. We define the monodiffric residue of f at z to be the value $M f(z)$ given by

$$
\begin{equation*}
M f(z)=(i-1) f(z)+f(z+i)-i f(z+1) . \tag{1.2}
\end{equation*}
$$

We say that f is monodiffric at z if $M f(z)=0$. And a function which is monodiffric at every point in D is monodiffric on D. In this case, we write $f \in M(D)$. The monodiffric derivative f^{\prime} of f is defined by

$$
f^{\prime}(z)=\frac{1}{2}[(i-1) f(z)+f(z+1)-i f(z+i)] .
$$

We also use the symbol $\frac{d f}{d z}$ or D_{z}.

3. The monodiffric exponential function $e^{a, z}$.

In [2], Isaacs has introduced the monodiffric exponential function $e^{a, z}$, it has a form $e^{a, z}=(1+a)^{x}(1+i a)^{y}$ for $z=x+i y$ and a is a complex number.

