On a parametrix for the hyperbolic mixed problem with diffractive lateral boundary

By Masato IMAI and Taira SHIROTA (Received May 15, 1978)

§ 1. Introduction and results.

Let Ω be a domain of the closed half space $R_+^{\overline{n+1}} = \{x \; ; \; x = (x', x_n), \; x' = (x_0, \cdots, x_{n-1}), \; x_n \geq 0\}$ containing a neighborhood of a point $x^0 = (0, x_1^0, \cdots, x_{n-1}^0)$ in its lateral boundary $\Gamma = \{x \; ; \; x \in \Omega, \; x_n = 0\}$ and let P(x, D) be a differential operator of order 2 with C^{∞} coefficients on $\overline{\Omega}$, which is normal hyperbolic with respect to x_0 .

Now let us consider the mixed problem in Ω ; for some $\delta > 0$

(1.1)
$$(P, B) \begin{cases} P(x, D) u = 0 & \text{in } \Omega \text{ and for } x_n < \delta, \\ B(x, D) u = f & \text{in } \Gamma, \\ u = 0 & x_0 < 0 \end{cases}$$

where $[0, \delta] \times \Gamma \subset \Omega$, the given boundary data f vanishes for $x_0 < 0$, B(x, D) is a differential operator of order 1, and Γ is non-characteristic with respect to B.

Reweiting the principal symbol $P_2(x,\xi)$ of P(x,D) in the following form:

(1.2)
$$P_2(x,\xi) = (\xi_n - \lambda(x,\xi'))^2 - \mu(x,\xi'), \ \xi = (\xi',\xi_n),$$

we assume that Γ is diffractive *i.e.*, that for $(x,\xi) \in T_{\Gamma}^*(\Omega)$

(1.3)
$$\left\{ \xi_n - \lambda(x, \xi'), \ \mu(x, \xi') \right\} > 0 \text{ when } \xi_n = \lambda(x, \xi') \text{ and } \mu(x, \xi') = 0$$

where $\{f,g\}$ is the Poisson bracket and then such points $(x,\xi') \in T^*(\Gamma)$ with above properties are called diffractive ([8]).

Near a fixed diffractive point $(x^0, \xi^{0'})$, let $\lambda^{\pm}(x, \xi')$ be roots of $P_2(x^0, \xi', \xi_n)$ =0 with respect to ξ_n such that for $\xi_0 > 0$

$$\lambda^{\pm}(x,\xi') = \lambda(x,\xi') \mp \sqrt{\zeta} \, \mu_3^{\frac{1}{2}}(x,\xi') \,,$$

$$\mu_3(x,\xi') > 0 \,,$$

$$\zeta - \xi - \mu \, (x,\xi') \, (\xi'' - (\xi, \dots, \xi)) \,.$$

(1.4)
$$\zeta = \xi_0 - \mu_2(x, \xi'') \left(\xi'' = (\xi_1, \dots, \xi_{n-1}) \right),$$

$$\mu_2(x, \xi'') \text{ is real valued },$$

$$\sqrt{1} = 1 \text{ and } \sqrt{-1} = -i.$$