On well posedness of mixed problems for Maxwell's equations II

By Kôji Kubota and Toshio Оhкubo

(Received March 2, 1978; Revised March 24, 1978)

§ 0. Introduction and main result

The purpose of this paper is to give an extension of the result in a preceding paper [5] to the case where boundary conditions are not necessarily real.

Let us consider the mixed problem for the system P of Maxwell's equations:
(P, B)

$$
\left\{\begin{array}{l}
P\left[\begin{array}{l}
E \\
H
\end{array}\right]=f \quad \text { in }(0, \infty) \times G \\
B\left[\begin{array}{c}
E \\
H
\end{array}\right]=0 \quad \text { on }(0, \infty) \times \partial G \\
E(0, x)=H(0, x)=0 \quad \text { for } x \in G
\end{array}\right.
$$

where

$$
P\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}\right)=\frac{\partial}{\partial t}+\left[\begin{array}{cc}
0 & -\operatorname{curl} \tag{0.1}\\
\operatorname{curl} & 0
\end{array}\right]
$$

which will be often denoted by $\frac{\partial}{\partial t}+\sum_{j=1}^{3} A_{j} \frac{\partial}{\partial x_{j}}, G$ is an open subset of $\boldsymbol{R}^{\mathbf{3}}$ with C^{∞} boundary ∂G and $B(t, x)$ is a C^{∞} complex 2×6 matrix function defined on $\boldsymbol{R}^{1} \times \partial G$ which is of rank two everywhere and is constant for $|t|+|x|$ sufficiently large. It is assumed, as in [5], that the problem (P, B) is reflexive, i. e., the kernel of $B(t, x)$ contains that of the boundary matrix $A_{\nu}(x)=\sum_{j=1}^{3} \nu_{j}(x) A_{j}$ at each $(t, x) \in \boldsymbol{R}^{1} \times \partial G$, where $\nu={ }^{t}\left(\nu_{1}, \nu_{2}, \nu_{3}\right)$ is the inner unit normal to ∂G.

When B is real we proved in [5] the following: If the frozen problem $(P, B)_{\left(t^{0}, x^{0}\right)}$ at an arbitrary boundary point $\left(t^{0}, x^{0}\right) \in \boldsymbol{R}^{1} \times \partial G$ (by this we mean the constant coefficients problem (P, B) with B replaced by the constant matrix $B\left(t^{0}, x^{0}\right)$ and G by the half space $\left.\left\{x \in \boldsymbol{R}^{3} ; \nu\left(x^{0}\right) \cdot x>0\right\}\right)$ satisfies Kreiss' condition (or the uniform Lopatinskii condition), then the kernel of $B\left(t^{0}, x^{0}\right)$

