On well posedness of mixed problems for Maxwell's equations II

By Kôji KUBOTA and Toshio OHKUBO

(Received March 2, 1978; Revised March 24, 1978)

§ 0. Introduction and main result

The purpose of this paper is to give an extension of the result in a preceding paper [5] to the case where boundary conditions are not necessarily real.

Let us consider the mixed problem for the system P of Maxwell's equations :

$$(P, B) \qquad \begin{cases} P \begin{bmatrix} E \\ H \end{bmatrix} = f & \text{in } (0, \infty) \times G, \\ B \begin{bmatrix} E \\ H \end{bmatrix} = 0 & \text{on } (0, \infty) \times \partial G, \\ E(0, x) = H(0, x) = 0 & \text{for } x \in G, \end{cases}$$

where

(0.1)
$$P\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}\right) = \frac{\partial}{\partial t} + \begin{bmatrix} 0 & -\operatorname{curl} \\ \operatorname{curl} & 0 \end{bmatrix}$$

which will be often denoted by $\frac{\partial}{\partial t} + \sum_{j=1}^{3} A_j \frac{\partial}{\partial x_j}$, G is an open subset of \mathbb{R}^3 with C^{∞} boundary ∂G and B(t, x) is a C^{∞} complex 2×6 matrix function defined on $\mathbb{R}^1 \times \partial G$ which is of rank two everywhere and is constant for |t| + |x| sufficiently large. It is assumed, as in [5], that the problem (P, B)is reflexive, i. e., the kernel of B(t, x) contains that of the boundary matrix $A_{\nu}(x) = \sum_{j=1}^{3} \nu_j(x) A_j$ at each $(t, x) \in \mathbb{R}^1 \times \partial G$, where $\nu = {}^t(\nu_1, \nu_2, \nu_3)$ is the inner unit normal to ∂G .

When B is real we proved in [5] the following: If the frozen problem $(P, B)_{(t^0, x^0)}$ at an arbitrary boundary point $(t^0, x^0) \in \mathbb{R}^1 \times \partial G$ (by this we mean the constant coefficients problem (P, B) with B replaced by the constant matrix $B(t^0, x^0)$ and G by the half space $\{x \in \mathbb{R}^3; \nu(x^0) \cdot x > 0\}$ satisfies Kreiss' condition (or the uniform Lopatinskii condition), then the kernel of $B(t^0, x^0)$