A uniqueness theorem for holomorphic functions of exponential type

By Mitsuo MORIMOTO and Kunio YOSHINO

(Received October 28, 1977; Revised November 21, 1977)

§1. Introduction.

In this paper we treat a uniqueness theorem for holomorphic functions of exponential type on a half plane from the point of view of the theory of analytic functionals with non-compact carrier.

Avanissian and Gay [1] proved among others the following Theorem 1 using the theorey of analytic functionals of Martineau [4].

THEOREM 1. Let $F(\zeta)$ be an entire function of type $\langle \pi$. If we have F(-n)=0 for every $n=1, 2, 3, \dots$, then the entire function $F(\zeta)$ vanishes identically.

Theorem 1 is a corollary to Carlson's theorem (see Boas [2] p. 153). THEOREM 2. (Carlson) Let $F(\zeta)$ be a holomorphic function on the half plane $\{\zeta = \xi + i\eta; \xi = \operatorname{Re} \zeta < 0\}$. Suppose that there exist real numbers a, k with $0 \leq k < \pi$ and $C \geq 0$ such that

$$|F(\zeta)| \leq C \exp(a\xi + k|\eta|) \quad for \operatorname{Re} \zeta < 0.$$

If we have F(-n) = 0 for $n = 1, 2, 3, \dots$, then the function $F(\zeta)$ vanishes identically.

We will prove Carlson's theorem by means of the theory of analytic functionals with non-compact carrier, which was introduced by the first named author [5] in connection with the theory of ultra-distributions of exponential growth of Sebastiaõ-è-Silva [6], namely Fourier ultra-hyperfunctions.

Following the sections we outline the results. In §2 we define the fundamental space $\mathscr{Q}(L; k')$, the element of which is a holomorphic function in a tubular neighborhood L_{\bullet} of the closed half strip $L=[a,\infty)+i[k_1,k_2]$. A continuous linear functional on the space $\mathscr{Q}(L; k')$ is, by definition, an analytic functional with carrier in L and of (exponential) type $\leq k'$. The image of the Laplace transformation of $\mathscr{Q}'(L; k')$ is characterized in Theorem 3. As in Avanissian-Gay [1] we define in §3 the transformation G_{μ}