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Some considerations on fibred spaces with
certain almost complex structures
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Fibred spaces with almost complex structures have been studied by M.
Ako [1]^{1)} and B. Watson [2]. The interesting result on a fibred space with
K\"ahlerian structure was given in [1]. The purpose of the present paper is
to study the analogous problem in fibred almost K\"ahlerian and almost Ta-
chibana spaces and give certain extensions of Theorem 5. 1 in [1]. For
the purpose we need to have the method in [1].

In section 1 we define fibred spaces \overline{M} and the additional conception.
In section 2 we introduce a projectable Riemannian metric \tilde{g} in \overline{M}. In
section 3 we give formulas for the covariant differentiation with respect to
the Riemannian connection induced by \tilde{g} . In section 4 we give some lemmas
which will be used to prove Theorems in section 5.
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1. Fibred spaces.

The manifolds, objects and mappings which we consider are assumed
to be of class C^{\infty}. The notation used in this paper is the same as [1].

Let \overline{M} and M be manifolds of dimension n and m respectively, where
n>m . A mapping \sigma from \overline{M} onto M is called a submersion if the differential
map \sigma_{*} induced by \sigma has the maximal rank m everywhere in \overline{M}. We assume
the existence of such a submersion. (\overline{M}, M;\sigma) is then called a fibred space
over M. Under the above assumption the inverse image \mathscr{F}_{P} of P\in M by
\sigma is an (n-m) -dimensional closed submanifold of \overline{M} and is called a fibre
over P. Throughout this paper we assume that each fibre is connected.

A vector in \tilde{M} at P\in\overline{M} is said to be vertical if it is tangent to the
fibre over \sigma(P) . A vector field of vertical vectors is called a vertical vector
field.

Now, since the rank of \sigma_{*}=m , there are (n-m) linearly independent
vertical vector fields C_{\alpha}(\alpha=m+1, \cdots, n) in a neighborhood of each point in

1) Numbers in brackets refer to references at the end of the paper.


