On modules which are flat over their endomorphism rings

By Takeshi ONODERA

(Received September 14, 1977; Revised October 29, 1977)

Let $_{R}M$ be a left *R*-module over a ring R^{1} , and *S* be the endomorphism ring of $_{R}M$. Let $_{R}A$ be a left *R*-module. We say that *M*-codominant dimension of *A* is $\geq n$, if there is an exact sequence:

 $X_n \longrightarrow X_{n-1} \longrightarrow \cdots \longrightarrow X_2 \longrightarrow X_1 \longrightarrow A \longrightarrow 0$,

where each X_i is isomorphic to a (finite or infinite) direct sum of copies of ${}_{R}M$. We denote by \mathscr{C}_n the category of left *R*-modules whose *M*-codominant dimensions are $\geq n$.

Recently T. Würfel has shown that, for a left *R*-module $_{R}M$, the following statements are equivalent :²⁾

- (a) The right S-module M_s is flat.
- (b) $_{R}M$ generates the kernel of every homomorphism $_{R}M^{m}\rightarrow_{R}M^{n}$, where m, n are natural numbers. (Here one can also set n=1).

Further, R. W. Miller has proved that, in case where $_{R}M$ is finitely generated and projective, the above statements are equivalent to

(c) $\mathscr{C}_2 = \mathscr{C}_3^{3}$

Here, regarding to the above results, we shall prove the following

THEOREM. Let $_{\mathbb{R}}M$ be left R-module with the endomorphism ring S, and Q an injective cogenerator in the category $_{\mathbb{R}}\mathfrak{M}$ of all left R-modules. Then the following statements are equivalent:

- (1) M_s is flat.
- (2) The left S-module $_{S}Hom_{R}(M, Q)$ is injective.
- (3) ${}_{S}\operatorname{Hom}_{R}(M, Q)$ is absolutely pure, that is, every homomorphism of a finitely generated submodule of ${}_{S}S^{m}$ to ${}_{S}\operatorname{Hom}_{R}(M, Q)$ is extended to that of ${}_{S}S^{m}$.
- (4) ${}_{s}\operatorname{Hom}_{R}(M, Q)$ is semi S-injective, that is, every homomorphism of a finitely generated left ideal of S to ${}_{s}\operatorname{Hom}_{R}(M, Q)$ is extended

¹⁾ In what follows, we assume that every ring has an identity element and every module is unital.

²⁾ Cf. [5], 1.14 Satz.

³⁾ Cf. [2], Theorem 2.1*.