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The growth of entire and meromorphic functions
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1. Let f(z) be an entire or meromorphic function. We shall denote by
C the complex plane and by \overline{C} , the extended complex plane. For a\in\overline{C},
let n(r, a) be the number of zeros of f(z)-a in |z|\leq r, where for a=\infty ,
n(r, \infty) stands for the number of poles of f(z) in |z|\leq r . We shall assume,
without loss of generality, that f(z) has no zeros or poles at the origin. Let
T(r)=T(r,f) be the Nevanlinna characteristic function of f(z) . Let n(0, a)=
0 and let

N(r, aj ) =N\{r,a)= \int_{0}^{r}\frac{n(t,a)}{t}dt

Let \rho be the order of f(z) . If

\lim_{rarrow}\sup_{\infty}\frac{\log^{+}n(r,a)}{1ogr}=\rho_{1}(a,f)=\rho_{1}(a)<\rho ,

we call a an e. v . B. (exceptional value in the sense of Borel). If

1- \lim_{rarrow}\sup_{\infty}\frac{N(r,a)}{T(r,f)}=\delta(a,f)=\delta(a)>0’.

a is called e. v . N. (exceptional value in the sense of Nevanlinna). Also, if

\tau=\lim_{rarrow}\sup_{\infty}\frac{T(r,f)}{r^{\rho}}(0<\rho<\infty)’\wedge

then f(z) is said to be of maximal, mean or minimal type according as \tau=

\infty , 0<\tau<\infty or \tau=0 . If f(z) is an entire function, we denote as usual

M(r)=M(r,f)= \max|f(z)||z|=r

2. We prove

THEOREM 1. Let f(z) be an entire function of order \rho , (0\leq\rho<\infty) .
Then for every \epsilon>0 , as rarrow\infty

M(r+ \frac{1}{r^{\rho-1+\epsilon}})\sim M(r) (1)

PROOF: Since log M(r) is a convex function of log r,


