A note on linearly compact modules

Dedicated to Professor Goro Azumaya on his 60th birthday

By Takeshi ONODERA

(Received July 14, 1978)

Let R, S be rings¹⁾ and ${}_{R}M_{S}$ be an R-S-bimodule such that ${}_{R}M$ is linearly compact²⁾ as left R-module. In this note we consider the conditions under which M_{S} , as right S-module, to be injective. Thus we have the following theorem which generalize Theoreme 2 in [1].

THEOREM. Let $_{R}M_{s}$ be an R-S-bimodule such that $_{R}M$ is linearly compact. Then the following statements are equivalent:

- (1) M_s is injective.
- (2) M_s is absolutely pure, that is, every homomorphism of a finitely generated submodule of S_s^m to M_s is extended to that of S_s^m , where m is arbitaray natural number and S_s^m is a direct sum of m-fold copies of S_s .
- (3) M_s is semi S-injective, that is, every homomorphism of a finitely generated right ideal of S to M_s is extended to that of S.
- (4) ${}_{s}\operatorname{Hom}_{R}(M, Q)$ is flat for every injective left R-module Q with essential socle.
- (5) ${}_{s}\operatorname{Hom}_{R}(M, K)$ is flat for every injective cogenerator K with essential socle.
- (6) ${}_{s}\operatorname{Hom}_{R}(M, K_{0})$ is flat for some injective cogenerator K_{0} with essential socle.

In case where $S = \text{End}(_{\mathbb{R}}M)$, the endomorphism ring of $_{\mathbb{R}}M$, the above statements (1)~(6) are equivalent also to

(7) $_{R}M$ cogenerates the cokernel of every homomorphism $_{R}M^{m} \rightarrow_{R}M^{n}$, where m, n are arbitrary natural numbers. (Here one can set m=1).

In order to prove the theorem we need the following

LEMMA³⁾. Let A_s be a finitely generated right S-module, $_RM_s$ be an

¹⁾ In what follows it is assumed that all rings have an identity element and all modules are unital.

²⁾ A left R-module is called linearly compact if every finitely solvable system of congruences $x \equiv m_{\alpha} \pmod{M_{\alpha}}, \alpha \in A$, is solvable where $m_{\alpha} \in M$ and M_{α} are submodules of M.

³⁾ Cf. [1], Lemma 2, also [4], Lemma 3.5.