The factorization in the commutant of a unitary operator

By Katsutoshi TAKAHASHI (Received April 19, 1979)

1. Introduction.

In this paper we generalize the results concerning the factorization of positive (i. e. positive semidefintie) operator valued functions on the unit circle to the abstract context. Let $\mathscr L$ be a complex Hilbert space, U a unitary operator on $\mathscr L$ and $\mathscr M$ a closed subspace of $\mathscr L$ which is invariant under U. Let $\{U\}'$ denote the commutant of U and $\mathscr M$ the algebra consisting of all bounded operators A in $\{U\}'$ such that $A\mathscr M \subseteq \mathscr M$. We ask the following question; which positive operator T in $\{U\}'$ is factorable in the sense that T = A * A for some A in $\mathscr A$?

Let us recall a classical example. Let \mathscr{E} be a separable Hiblert space, $L_{\mathscr{E}}^2$ the Hilbert space of all Lebesgue measurable \mathscr{E} -valued functions on the unit circle having square-integrable norm, and U_0 the bilateral shift on $L_{\mathscr{E}}^2$, i. e. $(U_0f)(e^{i\theta}) = e^{i\theta}f(e^{i\theta})$. Also let $L_{\mathscr{B}(\mathscr{E})}^{\infty}$ denote the algebra of all Legesgue measurable, essentially bounded functions from the unit circle to the algebra $\mathscr{B}(\mathscr{E})$ of bounded operators on \mathscr{E} , and M_F the multiplication operator on $L_{\mathscr{E}}^2$ by F in $L_{\mathscr{B}(\mathscr{E})}^{\infty}$, i. e. $(M_F f)(e^{i\theta}) = F(e^{i\theta}) f(e^{i\theta})$. It is known that the map $F \to M_F$ is a *-isomorphism from the algebra $L_{\mathscr{B}(\mathscr{E})}^{\infty}$ with involution $F^*(e^{i\theta}) = (F(e^{i\theta}))^*$ onto the commutant $\{U_0\}'$ of U_0 . (See, for example, [6, P48 and P50]). Let $H_{\mathscr{E}}^2$ and $H_{\mathscr{B}(\mathscr{E})}^{\infty}$ be the Hardy subspaces of $L_{\mathscr{E}}^2$ and $L_{\mathscr{B}(\mathscr{E})}^{\infty}$ respectively. It is easy to see that A lies in $H_{\mathscr{B}(\mathscr{E})}^{\infty}$ if and only if M_A maps $H_{\mathscr{E}}^2$ into itself. Thus the above question is essentially the factorization problem for positive operator valued functions if $\mathscr{L} = L_{\mathscr{E}}^2$, $\mathscr{U} = H_{\mathscr{E}}^2$ and $U = U_0$.

The above question was considered by Page and Gellar, in [5] and [2]. In [5], Page studies the invertibility of an operator $PA|\mathscr{U}$, where A lies in $\{U\}'$ and P is the orthogonal projection of \mathscr{L} onto \mathscr{U} , and showed that every invertible positive operator in $\{U\}'$ is factorable. Subsequently Gellar and Page [2] generalized this result, but only in an unsatisfactory way.

In the present paper we first prove a theorem which gives necessary and sufficient conditions for factorability. This contains the theorem of