Extension of involutions on spheres

By Yoshinobu KAMISHIMA

(Received May 12, 1978)

Introduction

Let Z_{2q} be a cyclic group of order 2q generated by T'. Suppose that a free involution T is given on the sphere S^n . If there exists a free Z_{2q} action on S^n such that the restriction of the Z_{2q} -action to the Z_2 -action coincides with T on S^n , i. e., $T'|Z_2 = T'^q = T$, then we call that the involution T on S^n extends to a free Z_{2q} -action. In this paper, we show that:

THEOREM. Let q be any integer and $n \ge 1$. Then, every picewise linear (resp. topological) free involution on S^{2n+1} extends to a picewise linear (resp. topological) free Z_{2q} -action on S^{2n+1} .

The theorem follows from a similar method to the proof of the following proposition.

PROPOSITION 3.1. Let T be a free involution on a homotopy sphere Σ^{2n+1} such that the normal invariant $\eta(\Sigma^{2n+1}/T) \in Im \{p^* : [L^{2n+1}(2q), G/H] \rightarrow [p^{2n+1}, G/H]\}$ and $(q, |\Theta_{2n+1}(\partial \pi)|) = 1$, where $p : p^{2n+1} \rightarrow L^{2n+1}(2q)$ is the projection and H=O, PL or TOP and $n \geq 2$. Then, T extends to a free Z_{2q} -action on Σ^{2n+1} .

§ 1 and § 2 will be devoted to the preliminaries of the above proposition. In § 3, we shall prove it and the above theorem.

The author would like to thank Professor Y. Kitada and Professor H. Suzuki for many valuable suggestions.

1. Definition of transfer

Let X^{2n-1} be a (2n-1)-dimensional closed oriented manifold with fundamental group π . Denote by $\mathscr{S}_{H}^{\epsilon}(X)$ the set of ϵ -homotopy structures on X, where H=O or PL and $\epsilon=h$ or s. An ϵ -homotopy equivalence $f: M \rightarrow X$ determines a normal map

