Notes on eigenvalues of Laplacian acting on p-forms

By Satoshi Asada
(Received December 5, 1978)

1. Introduction.

By generalizing the method of Payne-Pólya-Weinberger ([4]), for a compact domain on a minimal hypersurface in the Euclidean space, S. Y. Cheng ([2]) proved an inequality between successive eigenvalues of the Laplacian acting on C^{∞}-functions on this domain. On the other hand, M. Maeda ([3]) has got a similar result for a compact minimal submanifold with or without boundary in the unit sphere. The purpose of the present note is to present a similar inequality between successive eigenvalues of the Laplacian acting on p-forms (resp. 1 -forms) on a compact and oriented minimal hypersurface (resp. minimal submanifold of any codimension) without boundary in the unit sphere.

Let M be an $m(\geqslant 2)$-dimensional compact and oriented Riemannian manifold without boundary with the Riemannian metric g. For each $p=0$, $1, \cdots, m, A^{p}(M)$ denotes the space of all differential p-forms on M. For ω, $\eta \in A^{p}(M)$, we can define a C^{∞}-function $(\omega \mid \eta)$ on M as follows : $(\omega \mid \eta)$ is locally given by

$$
(\omega \mid \eta)=\sum_{\substack{j_{1}, \sum_{j} p \\ k_{1} \cdots k_{p}=1}}^{m} \omega_{j_{1} \cdots j_{p}} \eta_{k_{1} \cdots k_{p}} g^{j_{1} k_{1}} \cdots g^{j_{p} k_{p}}
$$

where we put $g_{j k}=g\left(\frac{\partial}{\partial z^{j}}, \frac{\partial}{\partial z^{k}}\right)$ for a local coordinate system $\left\{z^{j} ; j=1, \cdots\right.$, $m\}$ of M and $\left(g^{j k}\right)$ is the inverse matrix of $\left(g_{j k}\right)$. The inner product \langle, on $A^{p}(M)$ is defined by $\langle\omega, \eta\rangle:=\int_{M}(\omega \mid \eta) d V_{M}$. Here $d V_{M}$ denotes the volume form of M. We put $\|\omega\|:=\sqrt{\langle\omega, \omega\rangle}$. Let $d: A^{p}(M) \rightarrow A^{p+1}(M)$ be the operator of exterior differentiation and $\delta: A^{p+1}(M) \rightarrow A^{p}(M)$ be the adjoint operator of d with respect to \langle,$\rangle . Then the Laplace-Beltrami operator$ (Laplacian for short) Δ acting on p-forms is defined by $\Delta:=d \delta+\delta d: A^{p}(M)$ $\rightarrow A^{p}(M)$. The Laplacian is elliptic and a self-adjoint operator. Thus all eigenvalues of the Laplacian form a discrete infinite sequence :

$$
0=\lambda_{0}^{p} \leqslant \lambda_{1}^{p} \leqslant \cdots \leqslant \lambda_{n}^{p} \leqslant \cdots ; \lambda_{n}^{p} \longrightarrow \infty
$$

where each λ_{n}^{p} is repeated as many time as its multiplicity. Let $\left\{\varphi_{r} ; r=\right.$

