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1. We study the boundary behavior of the Dirichlet solution for an
unbounded boundary function in this paper. We treat the Dirichlet problem
by the Perron-Wiener-Brelot method. Let G be a bounded open set in the
complex plane and let f(b) be an extended real-valued function defined on
its boundary \partial G . The upper class U_{f}^{G} for f is given by

U_{f}^{G}=\{s ; superharmonic, bounded below on G_{j}

\varliminf_{zarrow b}s(z)\geqq f(b) for all b\in\partial G\}

and set \overline{H}_{f}^{G}(z)=\inf\{s(z); s\in U_{f}^{G}\} and \underline{H}_{f}^{G}(z)=-\overline{H}_{-f}^{G}(z) for z\in G . If \overline{H}_{f}^{G}=

\underline{H}_{f}^{G} and both harmonic, then f is called to be resolutive and H_{f}^{G}=\overline{H}_{f}^{G}=

\underline{H}_{f}^{G} is called the Dirichlet solution for f. Any bounded continuous function
on \partial G is resolutive. A point b\in\partial G is called a regular boundary point if
(1)

\lim_{zarrow b}H_{g}^{G}(z)=g(b)

for every bounded continuous function g on \partial G . Otherwise b is an irregular
boundary point. The regularity is a local character, that is, if b is a regular
boundary point for G and G_{0} is an open subset of G for which b is also
a boundary point, then b is regular for G_{0} .

Let b\in\partial G be a regular boundary point. By M. Brelot’s example [1],
we know that (1) does not always hold for any unbounded function, even
if it is continuous and resolutive. In this paper, we give a sufficient con-
dition for (1) to hold. Our result is the following:

THEOREM. Let f be an extended real-valued continuous and resolutive
function on \partial G . Suppose b_{0}\in\partial G is a regular boundary point If there is
a disk B(b_{0}, r_{0})=\{z;|z-b_{0}|<r_{0}\} such that the Dirichlet integral D_{G\cap B(b_{0},r_{0})}

(H_{f}^{G}) of H_{f}^{G} on G\cap B(b_{0}, r_{0}) is finite, then lim H_{f}^{G}(z)=f(b_{0}) .
zarrow b_{0}

For another sufficient condition, we refer to W. Ogawa [3].
2. The proof of the theorem. We refer to the monograph of Con-

stantinescu-Cornea [2] for the definition and the properties of Dirichlet fun-


