Q-projective transformations of an almost quaternion manifold: II

By Shigeyoshi Fujimura

(Received May 7, 1979)

Continued to the previous paper ([8]), we shall study infinitesimal Q projective transformations on the quaternion Kählerian manifold ${ }^{3}$ and prove the following theorems:

Theorem 4. If a complete quaternion Kählerian manifold (M, g, V) with positive scalar curvature S admits an infinitesimal non-affine Q projective transformation, (M, g, V) is isometric to the quaternion projective space of constant Q-sectional curvature $S / 4 m(m+2)$.

Theorem 5. In a compact quaternion Kählerian manifold, each vector field which satisfies (3.4) is an infinitesimal Q-projective transformation.

Concerning infinitesimal projective transformations of a Riemannian manifold or infinitesimal holomorphically projective transformations of a Kählerian manifold, we have known interesting analogous results, and we can see them in [9], [10], [11], and etc..

§ 5. Proof of Theorem 4.

From (3. 4), $\cdots,(3.7)$ and Ricci's formula, we get

$$
\begin{align*}
4(m+1) \nabla_{j} \eta_{i}= & \nabla_{j}\left(\nabla_{i} \nabla_{h} X^{h}-\nabla_{h} \nabla_{i} X^{h}\right)+\nabla_{j} \nabla_{h} \nabla_{i} X^{h} \tag{5.1}\\
& -\nabla_{h} \nabla_{j} \nabla_{i} X^{h}+\nabla_{h} \nabla_{j} \nabla_{i} X^{h} \\
= & -S\left(\nabla_{j} X_{i}+\nabla_{i} X_{j}\right) / 4 m+2 \nabla_{j} \eta_{i}-2 \Lambda_{j i}^{k h} \nabla_{k} \eta_{h} .
\end{align*}
$$

Transvecting (5.1) by $\Lambda_{f g}^{j i}$ and substituting it into (5.1), we have

$$
\begin{align*}
& \nabla_{j} \eta_{i}=S\left\{\Lambda_{j i}^{k h}\left(\nabla_{k} X_{h}+\nabla_{h} X_{k}\right)\right. \tag{5.2}\\
&\left.\quad-(2 m+3)\left(\nabla_{j} X_{i}+\nabla_{i} X_{j}\right)\right\} / 32 m^{2}(m+2)
\end{align*}
$$

where indices f and g run over the range $\{1, \cdots, 4 m\}$. On the other hand, from (1.1) and (3.1), we have
3) We assume that the dimension $4 m$ of $M \geqq 8$.

