Note on automorphisms in separable extension of non commutative ring

By Kozo Sugano

(Received April 19, 1979)

Preliminaries

All definitions and terminologies in this paper are the same as those in the same author's papers [8], [11] and [13]. So Λ shall be a ring with an identity 1, Γ a subring of Λ which contains 1, C the center of Λ , C' the center of Γ and $\Delta = V_A(\Gamma) = \{x \in A | xr = rx \text{ for all } r \in \Gamma\}$. A is an Hseparable extension of Γ if $\Lambda \otimes_{\Gamma} \Lambda$ is a $\Lambda - \Lambda$ -direct summand of some finite direct sum of copies of Λ . In this case Λ is a separable extension of Γ , *i.e.*, map π of $A \otimes_{\Gamma} A$ to A such that $\pi(x \otimes y) = xy$, for $x, y \in A$, splits as $\Lambda - \Lambda$ -map. As for the fundamental properties of H-separable extension, see [4], [5] and [12]. In [11] and [13] the author showed that in case Γ is a simple artinean ring, Λ is an H-separable extension of Γ if and only if Λ is an inner Galois extension of Γ . It is well known that in this case every automorphism of Λ which fixes all elements of Γ is an inner automorphism. In this paper we will generalize this theorem to the case of ordinal Hseparable extensions (Theorem 2). We will also show that every G-Galois extension such that all elements of G are inner automorphisms is an Hseparable extension (Theorem 3). For a two-sided Λ -module M, we denote C-submodule $\{m \in M | xm = mx \text{ for all } x \in A\}$ by M^{A} . Then, Λ is H-separable over Γ if and only if $\Delta \otimes_{C} M^{4} \cong M^{\Gamma}$ by $(d \otimes m \to dm)$ (see Theorem 1.2 [8]) for every two sided Λ -module M. We will use this theorem very often throughout this paper. For a ring Λ we denote the Jacobson radical of Λ by $J(\Lambda)$. We will also study in § 3 in what case $J(\Lambda) = \Lambda J(\Gamma) = J(\Gamma) \Lambda$ and $J(\Gamma) = J(\Lambda) \cap \Gamma$ holds when Λ is *H*-separable over Γ .

1. Automorphisms in H-separable extensions.

The first result is a supplement of Theorem 2 [5].

THEOREM 1. Let Λ be an H-separable extension of Γ . Then every ring endomorphism of Λ which fixes all elements of Γ is an automorphism and fixes all elements of $V_A(V_A(\Gamma))$.