Borel sets in non-separable Banach spaces*)

By D. H. FREMLIN

(Received June 7, 1979; Revised November 16, 1979)

- 1. Introduction Let E be a Banach space. I shall write $\mathscr{B} = \mathscr{B}(E)$ for the σ -algebra of norm-Borel sets of E and $\mathscr{C} = \mathscr{C}(E)$ for the "cylindrical σ -algebra" of E i. e. the smallest σ -algebra of subsets of E for which every element of the continuous dual E' of E is measurable. (By [2], Theorem 2. 3 this is just the Baire σ -algebra for the weak topology $\mathscr{T}_s(E, E')$.) Of course $\mathscr{C} \subseteq \mathscr{B}$; if E is separable, $\mathscr{C} = \mathscr{B}$. The question I wish to address in this note is: if $\mathscr{C} = \mathscr{B}$, does it follow that E is separable? This question was suggested to me by S. Okada. I shall show here that the answer is "no".
- 2. Definitions (a) If E is a Banach space, the *density character* of E, d(E), is the smallest cardinal of any dense subset of E. Note that if E is infinite-dimensional, then d(E) is also the smallest algebraic dimension of any dense linear subspace of E the "topological dimension" of E.
- (b) If X and Y are any sets and Σ , T are σ -algebras of subsets of X and Y respectively, I shall write $\Sigma \otimes_{\sigma} T$ for the σ -algebra of subsets of $X \times Y$ generated by $\{A \times B : A \in \Sigma, B \in T\}$. I shall write $\mathscr{P}X$ for the power set of X.
- (c) If X is any set, then $\mathscr{L}^1(X)$ is the Banach space of all functions $x: X \to \mathbf{R}$ such that $||x|| = \sum_{t \in X} |x(t)| < \infty$.
- 3. Lemma If X is an infinite set such that $\mathscr{P}(X \times X) = \mathscr{P}X \otimes_{\sigma} \mathscr{P}X$, then $\mathscr{B}(\mathscr{E}^{1}(X)) = \mathscr{C}(\mathscr{E}^{1}(X))$.

PROOF (a) I begin with two set-theoretic remarks. First, if Y is any set of the same cardinal as X, then $\mathscr{P}(X\times Y)=\mathscr{P}X \otimes_{\sigma} \mathscr{P}Y$. Consequently we can use induction to see that, for any $n\geqslant 0$, $\mathscr{P}(X^{n+1})$ is the σ -algebra of subsets of X^{n+1} generated by $\mathscr{R}_n=\{A_0\times \cdots \times A_n: A_i\subseteq X\forall\ i\leq n\}$. Secondly the diagonal $\{(t,t):\ t\in X\}$ belongs to $\mathscr{P}X\otimes_{\sigma}\mathscr{P}X$, and therefore belongs to the σ -algebra of subsets of $X\times X$ generated by some sequence $\langle A_n\times B_n\rangle_{n\in\mathbb{N}}$. Let $\mathscr E$ be the countable subalgebra of $\mathscr{P}X$ generated by $\{A_n:n\in\mathbb{N}\}\cup\{B_n:$

^{*)} The work of this paper was done during a visit to Japan supported by the United Kingdom Science Research Council and Hokkaido University; the principal ideas came during a conference supported by Kyoto University and the Matsunaga Foundation. My thanks are also due to M. Talagrand for pointing out an error in the first draft of this paper.