Note on intersections of translates of powers in finite fields

By Ronald J. Evans
(Received July 18, 1979)

Let F be a finite field of odd order q. Fix integers $t, n \geq 2$ with $n \mid(q-1)$. Let R denote the set of $(q-1) / n$ nonzero n-th powers in F. For $a \in F$, let R_{a} denote the translate $R+a$, and for $A \subset F$, define $R_{A}=\bigcap_{a \in A} R_{a}$. In this note, we consider the following problem suggested by N. Ito. Find the fields F for which

$$
\begin{equation*}
R_{A} \neq R_{B} \text { whenever } A \neq B \text { and } \min (|A|,|B|)=t . \tag{1}
\end{equation*}
$$

We will give a number theoretical proof of the following theorem.
Theorem: Let $Q(n, t)=2 X^{2}+Y+2 X \sqrt{X^{2}+Y}$, where

$$
X=t n^{t}-\frac{(n+1)\left(n^{t}-1\right)}{2(n-1)}-\frac{n\left(t^{2}-t\right)}{4}-\frac{\left(t^{2}+t\right)}{4}
$$

and

$$
Y=\frac{t n^{t}}{n-1}+\frac{n\left(t^{2}-t\right)}{2}-\frac{\left(t^{2}+t\right)}{2}
$$

Then (1) holds whenever $q>Q(t, n)$.
An easily proved consequence is:
Corollary: If $q>(2 t+1)^{2} n^{2 t}$, then (1) holds.
If we were to let $t=1$, then (1) would in fact hold for all fields F. Equivalently, R is distinct from each of its translates $R+a(a \neq 0)$. To see this, assume that $R=R+a$ for some $a \neq 0$. Then R is the disjoint union of sets of the form $\{x+a, x+2 a, \cdots, x+p a\}$, where p is the characteristic of F. Thus p divides $|R|=(q-1) / n$, a contradiction.

In studying Hadamard matrices and block design, Ito [1, Lemma 5] showed in the case $n=t=2, q \equiv-1(\bmod 4)$ that (1) holds for $q>7$. No better lower bound for q exists, since $R_{\{0,1]}=R_{\{0,2\}}$ when $q=7$. Now, the only odd prime powers between 7 and $Q(2,2) \cong 14.56$ are $9,11,13$, and inspection easily shows that (1) holds for these values of q when $n=t=2$. Thus our theorem proves Ito's result in the more general setting $q \equiv \pm 1(\bmod 4)$.

For large values of n or $t, Q(n, t)$ is undoubtedly far from the best

