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1. In order to generalize the notion of Azumaya algebra, we researched
on a special type of separable extension, called H-separable extension, and
have found that many properties which hold in Azumaya algebras hold also
in H-separable extensions (see for example [5], [2], [7] and [8]). In this
paper we shall study relations between Galois extensions and //-separable
extensions, and shall obtain some necessary and suficient conditions for Galois
extensions to be H-separable extensions. By the definition of Galois extension
and by Cor. 1. 1 [5], we can easily see that in the case of algebras over
a commutative ring R, H-separable Galois extensions of R is same as central
Galois extension of R. Throughout this paper \Lambda shall always be a ring with
1, \Gamma a subring of \Lambda which contains same 1, C the center of \Lambda and \Delta=V_{A}(\Gamma)

=\Lambda^{\Gamma}, and M^{\Lambda}= {m\in M|xm=mx for all x\in\Lambda} for any \Lambda-\Lambda -module M.
2. First, we shall recall definitions.
DEFINITION 1. \Lambda is called an H-separable extension of \Gamma when \Lambda and

\Gamma satisfy one of the following equivalent conditions;
(a) \Lambda\otimes_{\Gamma}\Lambda is isomorphic to a direct summand of \Lambda\oplus\Lambda\oplus\cdots\oplus\Lambda (finite

direct sum) as \Lambda-\Lambda -module.
(b) \Delta is C-finitely generated projective, and the following map \eta is an

isomorphism
\eta : \Lambda\otimes_{\Gamma}\Lambdaarrow Hom(_{CC}\Delta,\Lambda)\eta(x\otimes y)(d)=xyd(x, y\in\Lambda, d\in\Delta)

(c) For any \Lambda-\Lambda -module M, the following map g_{M} is an isomorphism
g_{M} : \Delta\otimes_{C}M^{\Lambda}arrow M^{\Gamma}g_{M}(d\otimes m)=dm(d\in\Delta, m\in M^{\Lambda})

(d) 1\otimes 1\in\Delta(\Lambda\otimes_{\Gamma}\Lambda)^{\Lambda}

As for the proof of equivalence of (a)\sim(d) , see Theorem 1. 2 [5], Prop. 1
[6] or (1. 3) [7]. Note that Azumaya algebra always satisfies these conditions.

Next, let \mathfrak{G} be a finite group of automorphisms of \Lambda which fix all ele-
ments of \Gamma We can make \Sigma_{\sigma\epsilon \mathfrak{G}}\Lambda U_{\sigma} a ring by (xU_{\sigma})(yU_{\tau})=x\sigma(y)U_{\sigma\tau}(\sigma, \tau\in \mathfrak{G}) ,
where \{U_{\sigma}\}_{\sigma\epsilon \mathfrak{G}} is a free \Lambda -basis. We denote this ring by \Delta(\Lambda:\mathfrak{G}) . Then
we can always have a ring homomorphism j of \Delta ( \Lambda : G) to Hom (\Lambda_{\Gamma}, \Lambda_{\Gamma})

such that j(xU_{\sigma})(y)=x\sigma(y)(x, y\in\Lambda, \sigma\in \mathfrak{G}) .
DEFINITION 2. We say that \Lambda is a \mathfrak{G} Galois extension of \Gamma when \Lambda


