On a special type of Galois extensions

Dedicated to Professor G. Azumaya on his 60th birthday

By Kozo Sugano (Received July 27, 1979)

- 1. In order to generalize the notion of Azumaya algebra, we researched on a special type of separable extension, called H-separable extension, and have found that many properties which hold in Azumaya algebras hold also in H-separable extensions (see for example [5], [2], [7] and [8]). In this paper we shall study relations between Galois extensions and H-separable extensions, and shall obtain some necessary and sufficient conditions for Galois extensions to be H-separable extensions. By the definition of Galois extension and by Cor. 1.1 [5], we can easily see that in the case of algebras over a commutative ring R, H-separable Galois extensions of R is same as central Galois extension of R. Throughout this paper Λ shall always be a ring with 1, Γ a subring of Λ which contains same 1, Γ the center of Γ and Γ
 - 2. First, we shall recall definitions.

Definition 1. Λ is called an H-separable extension of Γ when Λ and Γ satisfy one of the following equivalent conditions;

- (a) $\Lambda \otimes_r \Lambda$ is isomorphic to a direct summand of $\Lambda \oplus \Lambda \oplus \dots \oplus \Lambda$ (finite direct sum) as $\Lambda \Lambda$ -module.
- (b) Δ is C-finitely generated projective, and the following map η is an isomorphism
 - $\eta: \Lambda \otimes_{\Gamma} \Lambda \to \text{Hom}(_{C}\Delta, _{C}\Lambda) \quad \eta(x \otimes y)(d) = xyd(x, y \in \Lambda, d \in \Delta)$
 - (c) For any $\Lambda \Lambda$ -module M, the following map g_M is an isomorphism $g_M: \Delta \bigotimes_C M^{\Lambda} \to M^{\Gamma} g_M(d \bigotimes m) = dm \ (d \in \Delta, m \in M^{\Lambda})$
 - (d) $1 \otimes 1 \in \mathcal{A}(\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda}$

As for the proof of equivalence of (a) \sim (d), see Theorem 1.2 [5], Prop. 1 [6] or (1.3) [7]. Note that Azumaya algebra always satisfies these conditions.

Next, let \mathfrak{G} be a finite group of automorphisms of Λ which fix all elements of Γ . We can make $\Sigma_{\sigma \in \mathfrak{G}} \Lambda U_{\sigma}$ a ring by $(xU_{\sigma})(yU_{\tau}) = x\sigma(y) \ U_{\sigma \tau} \ (\sigma, \tau \in \mathfrak{G})$, where $\{U_{\sigma}\}_{\sigma \in \mathfrak{G}}$ is a free Λ -basis. We denote this ring by $\Delta(\Lambda : \mathfrak{G})$. Then we can always have a ring homomorphism j of $\Delta(\Lambda : \mathfrak{G})$ to $\mathrm{Hom}(\Lambda_{\Gamma}, \Lambda_{\Gamma})$ such that $j(xU_{\sigma})(y) = x\sigma(y) \ (x, y \in \Lambda, \sigma \in \mathfrak{G})$.

Definition 2. We say that Λ is a $\mathfrak G$ -Galois extension of Γ when Λ