Mean curvatures for certain ν -planes in quaternion Kählerian manifolds

By Shigeyoshi FUJIMURA (Received February 25, 1980)

Introduction.

Let (M, g) be an *n*-dimensional Riemannian manifold with metric tensor g. We denote by K(X, Y) the sectional curvature for a 2-plane spanned by tangent vectors X and Y at $P \in M$, and by π a ν -plane at $P \in M$. Let $\{e_1, \dots, e_n\}$ be an orthonormal base of the tangent space at P such that $\{e_1, \dots, e_n\}$ spans π . S. Tachibana [3] defined the mean curvature $\rho(\pi)$ for π by

$$\rho(\pi) = \frac{1}{\nu(n-\nu)} \sum_{b=\nu+1}^{n} \sum_{a=1}^{\nu} K(e_a, e_b),$$

which is independent of the choice of an adapted base for π . He obtained the following

THEOREM A (S. Tachibana [3]). In an n(>2)-dimensional Riemannian manifold (M, g), if the mean curvature for ν -plane is independent of the choice of ν -planes at each point, then

(i) for v=1 or n-1, (M, g) is an Einstein space,

(ii) for $1 < \nu < n-1$ and $2\nu \neq n$, (M, g) is of constant curvature,

(iii) for $2\nu = n$, (M, g) is conformally flat.

The converse is true.

Taking holomorphic 2λ -planes or antiholomorphic ν -planes, instead of ν -planes, analogous results in Kählerian manifolds are also obtained.

THEOREM B (S. Tachibana [4] and S. Tanno [5]). In a Kählerian manifold (M, g, J) of dimension $n=2l\geq 4$, if the mean curvature for holomorphic 2λ -plane is independent of the choice of holomorphic 2λ -planes at each point, then

(i) for $1 \leq \lambda \leq l-1$ and $2\lambda \neq l$, (M, g, J) is of constant holomorphic sectional curvature,

(ii) for $2\lambda = l$, the Bochner curvature tensor vanishes. The converse is true.

THEOREM C (K. Iwasaki and N. Ogitsu [2]). In a Kählerian manifold (M, g, J) of dimension $n=2l\geq 4$, if the mean curvature for antiholomorphic