Some remarks on separable extensions

Dedicated to Professor Goro Azumaya on his 60th birthday

> By Kazuhiko HIRATA (Received May 12, 1980)

Many equivalent conditions for a ring extension to be *H*-separable have been studied by Sugano and Nakamoto in [2] and [4] etc.. In this connection we give some equivalent conditions for separable extensions in Theorem 1. In § 2, we consider the automorphism group of an *H*-separable extension, and in Theorem 3 we give an exact sequence which turns into the result of Rosenberg and Zelinsky [3] Theorem 7 in case of Λ is an Azumaya algebra.

§ 1. Separable extension

Throughout this paper we assume that all rings have the identity 1 and subrings contain this element and modules are unitary. For any twosided module M over a ring A, M^A means the set $\{m \in M | am = ma \text{ for} all \ a \in A\}$. Thus for a ring Λ and a subring Γ of Λ , denote by Δ , $\Delta = \Lambda^r = \{d \in \Lambda | d\gamma = \gamma d, \ \gamma \in \Gamma\}$, the commutator of Γ in Λ , and by C, $C = \Lambda^A$, the center of Λ .

THEOREM 1. Let Λ be a ring with the center C, Γ a subring of Λ . Then the following conditions are equivalent.

(1) Λ is separable over Γ .

(2) $(\Lambda \otimes_{\Gamma} \Lambda)^{A}$ is $(\Lambda \otimes_{\Gamma} \Lambda)^{\Gamma}$ -finitely generated projective and $\Lambda \cong \operatorname{Hom}_{(A \otimes_{\Gamma} \Lambda)^{\Gamma}}$ $((\Lambda \otimes_{\Gamma} \Lambda)^{A}, \Lambda \otimes_{\Gamma} \Lambda)$ as two-sided Λ -modules.

(3) For any two-sided Λ -module M, $M^{\Lambda} \cong (\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda} \otimes_{(\Lambda \otimes_{\Gamma} \Lambda)^{\Gamma}} M^{\Gamma}$ as C-modules.

(4) $C \cong (\Lambda \otimes_{\Gamma} \Lambda)^{A} \otimes_{(\Lambda \otimes_{\Gamma} \Lambda)^{\Gamma}} \Lambda$ as C-modules.

 $(5) \quad (\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda} \cdot \varDelta = C.$

(6) There exists an element $\sum x_i \otimes y_i$ in $(A \otimes_{\Gamma} A)^A$ such that $\sum x_i y_i = 1$.

PROOF. (1) \Rightarrow (2). By the definition Λ is separable over Γ means that Λ is a two-sided Λ -direct summand of $\Lambda \otimes_{\Gamma} \Lambda$, ${}_{\Lambda} \Lambda_{\Lambda} < \bigoplus \Lambda \otimes_{\Gamma} \Lambda$. Then by Theorem 1.2 [1], (1) implies (2). Note that, in this case, $(\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda}$ is a direct summand right ideal of $(\Lambda \otimes_{\Gamma} \Lambda)^{\Gamma} \cong \operatorname{Hom}_{A,A}(\Lambda \otimes_{\Gamma} \Lambda, \Lambda \otimes_{\Gamma} \Lambda)$. (2) \Rightarrow (3).