Hokkaido Mathematical Journal Vol. 11 (1982) p. 205-215

Mean curvature for certain *p*-planes in Sasakian manifolds

Dedicated to the memory of Professor Yoshie Katsurada

By Shigeyoshi FUJIMURA

(Received March 17, 1981; Revised August 28, 1981)

Introduction

Let (M, g) be an *m*-dimensional Riemannian manifold with a metric tensor *g*. We denote by K(X, Y) the sectional curvature for a 2-plane spanned by tangent vectors *X* and *Y* at $x \in M$, and by π a *p*-plane at $x \in M$. Let $\{e_1, \dots, e_m\}$ be an orthonormal base of the tangent space at $x \in M$ such that $\{e_1, \dots, e_p\}$ spans π , which is called an adapted base for π . S. Tachibana [7] defined the mean curvature $\rho(\pi)$ for π by

$$\rho(\pi) = \frac{1}{p(m-p)} \sum_{a=1}^{p} \sum_{b=p+1}^{m} K(e_a, e_b)$$

which is independent of the choice of adapted bases for π , and proved the following :

THEOREM A (S. Tachibana, [7]). In a Riemannian manifold (M, g) of dimension m>2, if the mean curvature for p-plane is independent of the choice of p-planes at each point, then

(i) for p=1 or m-1, (M, g) is an Einstein space,

(ii) for $2 \leq p \leq m-2$ and $2p \neq m$, (M, g) is of constant curvature,

(iii) for 2p = m, (M, g) is conformally flat.

The converse is true.

Taking holomorphic 2q-planes or antiholomorphic p-planes instead of p-planes, analogous results in Kählerian manifolds have been obtained.

THEOREM B (S. Tachibana [8] and S. Tanno [9]). In a Kählerian manifold (M, g, J) of dimension $2n \ge 4$, if the mean curvature for 2q-plane is independent of the choice of holomorphic 2q-planes at each point, then

(i) for $1 \leq q \leq n-1$ and $2q \neq n$, (M, g, J) is of constant holomorphic sectional curvature,

(ii) for 2q=n, the Bochner curvature tensor vanishes. The converse is true.

normai pair AA, 1 ,, inch

$$K(X', Y') = K(X, Y)$$

for the 2-plane spanned by any $X' \in C(X)$ and $Y' \in C(Y)$.

PROOF. Putting $Y_1 = \alpha Y + \beta \phi Y$ ($\alpha^2 + \beta^2 = 1$), since $\{X, Y_1\}$ is a ϕ -antiholomorphic orthonormal pair, we have

$$K(X, Y_1) = K(X, \phi Y_1),$$

from which it follows that