Mean curvature for certain p-planes

in Sasakian manifolds

Dedicated to the memory of Professor Yoshie Katsurada

By Shigeyoshi Fujimura

(Received March 17, 1981; Revised August 28, 1981)

Introduction

Let (M, g) be an m-dimensional Riemannian manifold with a metric tensor g. We denote by $K(X, Y)$ the sectional curvature for a 2 -plane spanned by tangent vectors X and Y at $x \in M$, and by π a p-plane at $x \in M$. Let $\left\{e_{1}, \cdots, e_{m}\right\}$ be an orthonormal base of the tangent space at $x \in M$ such that $\left\{e_{1}, \cdots, e_{p}\right\}$ spans π, which is called an adapted base for π. S . Tachibana [7] defined the mean curvature $\rho(\pi)$ for π by

$$
\rho(\pi)=\frac{1}{p(m-p)} \sum_{a=1}^{p} \sum_{b=p+1}^{m} K\left(e_{a}, e_{b}\right),
$$

which is independent of the choice of adapted bases for π, and proved the following :

Theorem A (S. Tachibana, [7]). In a Riemannian manifold (M, g) of dimension $m>2$, if the mean curvature for p-plane is independent of the choice of p-planes at each point, then
(i) for $p=1$ or $m-1,(M, g)$ is an Einstein space,
(ii) for $2 \leqq p \leqq m-2$ and $2 p \neq m,(M, g)$ is of constant curvature,
(iii) for $2 p=m,(M, g)$ is conformally flat.

The converse is true.
Taking holomorphic $2 q$-planes or antiholomorphic p-planes instead of p-planes, analogous results in Kählerian manifolds have been obtained.

Theorem B (S. Tachibana [8] and S. Tanno [9]). In a Kählerian manifold (M, g, J) of dimension $2 n \geqq 4$, if the mean curvature for $2 q$-plane is independent of the choice of holomorphic $2 q$-planes at each point, then
(i) for $1 \leqq q \leqq n-1$ and $2 q \neq n,(M, g, J)$ is of constant holomorphic sectional curvature,
(ii) for $2 q=n$, the Bochner curvature tensor vanishes.

The converse is true.
rivi ricus puir $1 \infty, 1$, нitert

$$
K\left(X^{\prime}, Y^{\prime}\right)=K(X, Y)
$$

for the 2-plane spanned by any $X^{\prime} \in C(X)$ and $Y^{\prime} \in C(Y)$.
Proof. Putting $Y_{1}=\alpha Y+\beta \phi Y\left(\alpha^{2}+\beta^{2}=1\right)$, since $\left\{X, Y_{1}\right\}$ is a ϕ-antiholomorphic orthonormal pair, we have

$$
K\left(X, Y_{1}\right)=K\left(X, \phi Y_{1}\right),
$$

