On s-distance subsets in real hyperbolic space

By Eiichi BANNAI (Received June 29, 1981)

Abstract

It is shown that if X is an s-distance subset in real hyperbolic space H^a , then

$$|X| \le {d+s \choose s} + {d+s-1 \choose s-1}.$$

Introduction

A subset X in a metric space M is called an s-distance subset in M if there are s distinct distances $\alpha_1, \alpha_2, \dots, \alpha_s$, and all the α_i are realized. Delsarte-Goethals-Seidel [6] have shown that the cardinality |X| of an s-distance subset X in the d-dimensional unit sphere $S^d = \{(x_1, x_2, \dots, x_{d+1}) | x_1^2 + x_2^2 + \dots + x_{d+1}^2 = 1\} \subset \mathbf{R}^{d+1}$ is bounded from above as

$$|X| \le {d+s \choose s} + {d+s-1 \choose s-1}.$$

Larman-Rogers-Seideal [9] and Bannai-Bannai [1] have shown that the same upper bound (1) is obtained for the cardinality of an s-distance subset in real Euclidean space \mathbb{R}^d . In this paper we prove that the same bound (1) is also true for an s-distance subset in the real hyperbolic space H^d of (topological) dimension d. That is:

THEOREM 1. If X is an s-distance subset in H^d , then

$$|X| \le {d+s \choose s} + {d+s-1 \choose s-1}.$$

1. Proof of Theorem 1

The basic idea of the proof is the same as that of Delsarte-Goethals-Seidel [6] and Koornwinder [8]. Here we need a proper realization of the hyperbolic space H^a in \mathbb{R}^{a+1} .

(i) It is known that the hyperbolic space H^a , which is also called Lobatschewsky and Bolyai space, of dimension d is realized in a Euclidean space of \mathbb{R}^{d+1} as