An application of Evens' norm mapping

By Yoshito OGAWA (Received February 1, 1982; Revised February 12, 1982)

1. Introduction

Let B_0 be the principal block of kG, where k is the prime field of characteristic p>0 and G is a finite group such that $G_p\neq 1$. G_p means a Sylow p-subgroup of G. All modules are finite dimensional vector spaces over k.

If a simple kG-module M does not belong to B_0 , then $\bigoplus_{i=1}^{\infty} H^i(G, M) = 0$. Therefore, if $\bigoplus_{i=1}^{\infty} H^i(G, M) \neq 0$ is proved for any simple kG-module M lying in B_0 , then B_0 is written as $\{M | M \text{ represents an isomorphic class of simple } kG$ -modules such that $\bigoplus_{i=1}^{\infty} H^i(G, M) \neq 0.\}$ (cf. Barnes, Schmid and Stammbach [1, § 3, Remark]). This characterization of B_0 is known, only when G is a p-nilpotent group (classical), a p-solvable group with an abelian Sylow p-subgroup [3, Theorem 2] or a metabelian group [3, Theorem 3].

The aim of this note is to prove the following Theorem 1 which generalizes [3, Theorem 2], by using Evens' norm mapping [2]. Specifically we show that B_0 is written as above, when G is a Frobenius group whose Frobenius kernel has the order divisible by p.

THEOREM 1. Let G be a finite group with a normal p-subgroup D. Suppose M be a projective k[G/D]-module. We regard M as a kG-module. If $M^* = \operatorname{Hom}_k(M, k)$ is isomorphic to a kG-submodule of $S^i(\Omega_1(A)^*)$ for some normal abelian subgroup A of G such that $A \leq D$, then $H^{2qi}(G, M) \neq 0$. Here $\Omega_1(A) = \langle x \in A | x^p = 1 \rangle$, q = |D:A| and $S = \bigoplus_{i=0}^{\infty} S^i$ is the symmetric algebra functor over k.

[3, Theorem 2] is deduced from the case of D=A. Next we specialize to a Frobenius group and have the following.

THEOREM 2. Let G be a Frobenius group with the Frobenius kernel N such that $N_p \neq 1$. Then $\bigoplus_{i=1}^{|H|} H^{2qi}(G, M) \neq 0$ for every simple kG-module M lying in B_0 , where $q = |N_p : Z(N_p)|$, $Z(N_p)$ is the center of N_p and H is a Frobenius complement of G. Namely B_0 is described as the set $\{M|M\}$ represents an isomorphic class of simple kG-modules such that $\bigoplus_{i=1}^{\infty} H^i(G, M) \neq 0\}$.