An application of Evens' norm mapping

By Yoshito Ogawa
(Received February 1, 1982 ; Revised February 12, 1982)

1. Introduction

Let B_{0} be the principal block of $k G$, where k is the prime field of characteristic $p>0$ and G is a finite group such that $G_{p} \neq 1 . G_{p}$ means a Sylow p-subgroup of G. All modules are finite dimensional vector spaces over k.

If a simple $k G$-module M does not belong to B_{0}, then $\oplus_{i=1}^{\infty} H^{i}(G, M)=0$. Therefore, if $\oplus_{i=1}^{\infty} H^{i}(G, M) \neq 0$ is proved for any simple $k G$-module M lying in B_{0}, then B_{0} is written as $\{M \mid M$ represents an isomorphic class of simple $k G$-modules such that $\oplus_{i=1}^{\infty} H^{i}(G, M) \neq 0$.\}. (cf. Barnes, Schmid and Stammbach [1, §3, Remark]). This characterization of B_{0} is known, only when G is a p-nilpotent group (classical), a p-solvable group with an abelian Sylow p-subgroup [3, Theorem 2] or a metabelian group [3, Theorem 3].

The aim of this note is to prove the following Theorem 1 which generalizes [3, Theorem 2], by using Evens' norm mapping [2]. Specifically we show that B_{0} is written as above, when G is a Frobenius group whose Frobenius kernel has the order divisible by p.

Theorem 1. Let G be a finite group with a normal p-subgroup D. Suppose M be a projective $k[G / D]$-module. We regard M as a $k G$-module. If $M^{*}=\operatorname{Hom}_{k}(M, k)$ is isomorphic to a $k G$-submodule of $S^{i}\left(\Omega_{1}(A) *\right)$ for some normal abelian subgroup A of G such that $A \leqq D$, then $H^{2 q i}(G, M)$ $\neq 0$. Here $\Omega_{1}(A)=\left\langle x \in A \mid x^{p}=1\right\rangle, q=|D: A|$ and $S=\oplus_{i=0}^{\infty} S^{i}$ is the symmetric algebra functor over k.
[3, Theorem 2] is deduced from the case of $D=A$. Next we specialize to a Frobenius group and have the following.

Theorem 2. Let G be a Frobenius group with the Frobenius kernel N such that $N_{p} \neq 1$. Then $\oplus_{i=1}^{\mid[\mid]} H^{2 q i}(G, M) \neq 0$ for every simple $k G$-module M lying in B_{0}, where $q=\left|N_{p}: Z\left(N_{p}\right)\right|, Z\left(N_{p}\right)$ is the center of N_{p} and H is a Frobenius complement of G. Namely B_{0} is described as the set $\{M \mid M$ represents an isomorphic class of simple $k G$-modules such that $\oplus_{i=1}^{\infty} H^{i}(G, M)$ $\neq 0$.

