On H-separable extensions of two sided simple rings

By Kozo Sugano
(Received September 7, 1981 ;Revised November 19, 1981)

§ 1. Introduction. Throughout this paper A is a ring with the identity 1 , and B is a subgring of A such that $1 \in B$. Each B-module (or A module) is unitary, and each $A-A$-module M satisfies that ($a m$) $b=a(m b)$ for $a, b \in A$ and $m \in M$. In addition we will set $C=V_{A}(A)$, the center of A, and $D=V_{A}(B)$ the centralizer of B in A

We say that A is an H-separable extension of B in the case where ${ }_{A} A \otimes_{B} A_{A}<\oplus_{A}(A \oplus A \oplus \cdots \oplus A)_{A}$ (direct summand of a finite direct sum of copies of A). As for some characterizations and properties of H-separable extension see for example [3], [6], [9] and [10].

In this paper we will deal with H-separable extensions of two sided simple rings. In particular, in the case where B is a two sided simple ring we will show that A is right B-finitely generated projective and an H-separable extension of B, if and only if A is a two sided simple ring, $V_{A}\left(V_{A}(B)\right)=B$ and $V_{A}(B)$ is a simple C-algebra (Theorem 1). Furthermore, under the conditions of Theorem 1 we will show that for any simple C-subalgebra T of $D, V_{A}(T)$ is two sided simple, $V_{A}\left(V_{A}(T)\right)=T$ and A is an H-separable extension of $V_{A}(T)$ and right $V_{A}(T)$-finitely generated projective (Proposition 2). Finally, under the same conditions we will obtain a duality on two sided simple subrings, which is similar to the well known classical inner Galois theory on simple (artinian) rings (Theorem 2).
§2. We say that A is a two sided simple ring in case A has no proper two sided ideal except 0 , and a right artinian two sided simple ring with 1 is called a simple ring. Whenever we call A a simple algebra over a field K, A shall be a K-algebra which is two sided simple and $[A: K]<\infty$. Hereafter we will call each two sided ideal simply an ideal.

Given a right A-module M, set $\Omega=\operatorname{Hom}\left(M_{A}, M_{A}\right)$. Then, as is well known, M is an $\Omega-A$-module, and we have an $A-A$-map

$$
\tau: \operatorname{Hom}\left(M_{A}, A_{A}\right) \otimes_{\Omega} M \longrightarrow A
$$

such that $\tau(f \otimes m)=f(m)$ for $f \in \operatorname{Hom}\left(M_{A}, A_{A}\right)$ and $m \in M$. $\operatorname{Im} \tau$ is an ideal of A, and $\operatorname{Im} \tau=A$ if and only if M is a right A-generator. Therefore if A is two sided simple and $\operatorname{Hom}\left(M_{A}, A_{A}\right) \neq 0$, we have $0 \neq \operatorname{Im} \tau=A$. Thus

