Hokkaido Mathematical Journal Vol. 11 (1982) p. 238-245

A remark on Xia's theorem concerning quasi-invariant measures

By Yasuji TAKAHASHI

(Received June 22, 1981; Revised November 2, 1981)

§ 1. Introduction

Let E and F be Banach spaces, and suppose that F itself is a linear subspace of E. Also suppose that the inclusion mapping J of F into E is continuous. Then the author [4, Proposition 3.1] proved the following:

PROPOSITION 1.1. The following implication $(1) \Rightarrow (2)$ holds.

(1) There exists a finite Borel measure on E which is quasi-invariant with respect to F.

(2) The adjoint mapping J^* of E^* into F^* is absolutely summing.

In Proposition 1.1, if E is a Hilbert space and F is a Banach space, then the converse implication $(2) \Rightarrow (1)$ also holds (cf. [4, Theorem A]).

Now we shall consider the following problem.

PROBLEM. Can we show the equivalence of statements (1) and (2) of Proposition 1.1 when E and F belong to some suitable class of Banach spaces?

Concerning this, Xia [7, p. 319, Example 5.3.1] and the author [4, Proposition 4.1.1] proved the following:

THEOREM 1.1. Let $1 \leq p < \infty$, $1 \leq q \leq 2$. If we assume that $l^q \subset l^p(a_n)$, then the following statements are equivalent.

(1) There exists a finite Borel measure on $l^{p}(a_{n})$ which is quasiinvariant with respect to l^{q} .

(2) The adjoint mapping J^* of $(l^p(a_n))^*$ into $(l^q)^*$ is absolutely summing, where J denotes the inclusion mapping of l^q into $l^p(a_n)$.

(3) $\sum a_n < \infty$.

The purpose of this note is to give a generalization of the above theorem to a function space, which is stated as follows:

Let (Ω, Σ, μ) and (Ω, Σ, ν) be σ -finite measure spaces. For $1 \leq p < \infty$, $1 \leq q < \infty$, we denote by $L^{p}(\mu)$ the Banach space of equivalence classes of real valued measurable functions on (Ω, Σ, μ) whose p'th power is integrable,