On a lifting problem of Fourier-Stieltjes transforms of measures

By Jyunji INOUE (Received April 17, 1982; Revised October 13, 1982)

Let G and \widehat{G} be a LCA group and its dual group, respectively. M(G) denotes the measure algebra on G, the Banach algebra of bounded regular complex Borel measures on G with convolution multiplication and total variation norm $||\cdot||$. $M_a(G)$ and $M_s(G)$ express the space of absolutely continuous measures and the space of singular measures on G with respect to the Haar measure of G, respectively. For $\mu \in M(G)$, $\widehat{\mu}$ denotes the Fourier-Stieltjes transform of μ , and we put $B(\widehat{G}) = \{\widehat{\mu} | \mu \in M(G)\}$, $A(\widehat{G}) = \{\widehat{\mu} | \mu \in M_a(G)\}$, $B_s(\widehat{G}) = \{\widehat{\mu} | \mu \in M_s(G)\}$. $B(\widehat{G})$ is a Banach algebra with respect to the pointwise multiplication and the norm $||\widehat{\mu}|| = ||\mu||$.

Let Λ be a closed subgroup of \widehat{G} . The following theorem is well-known ([6]).

Theorem 1. $B(G)|_{A} = B(A), A(G)|_{A} = A(A).$

It follows from theorem 1 that each member of $B(\Lambda)$ (resp. $A(\Lambda)$) can be lifted to a member of $B(\hat{G})$ (resp. $A(\hat{G})$), but it is not clear whether there exist any liftings which are linear maps from $B(\Lambda)$ to $B(\hat{G})$ (resp. from $A(\Lambda)$ to $A(\hat{G})$).

On the other hand, in the recent papers [4] and [5], we can find partial answers to this lifting problem.

THEOREM 2 (cf. [4] and [5]). Let Λ be a discrete subgroup of \hat{G} , let H be the annihilator of Λ in G, and let W be a neighborhood of $0 \in \hat{G}$. Choose a neighborhood U of $0 \in \hat{G}$ and a probability measure $\rho \in M_a(G)$ such that supp $\hat{\rho} \subset U \subset W$ and $(U-U) \cap \Lambda = \{0\}$, and put

$$\hat{J}\hat{\mu}(\gamma) = \sum_{\alpha \in A} \hat{\mu}(\alpha) \,\hat{\rho}(\gamma - \alpha) \qquad (\hat{\mu} \in B(\Lambda), \, \gamma \in \hat{G})$$

Then we have $\hat{J}\hat{\mu} \in B(\hat{G})$ with the following additional properties.

- i) $\hat{J}\hat{\mu}|_{\Lambda} = \hat{\mu}$,
- ii), $||\hat{J}\hat{\boldsymbol{\mu}}|| = ||\hat{\boldsymbol{\mu}}||$,
- (*) iii) $\hat{J}\hat{\mu}$ is positive definite if $\hat{\mu}$ is positive definite,