On a lifting problem of Fourier-Stieltjes transforms of measures

By Jyunji Inoue
(Received April 17, 1982 ; Revised October 13, 1982)

Let G and \hat{G} be a LCA group and its dual group, respectively. $\quad M(G)$ denotes the measure algebra on G, the Banach algebra of bounded regular complex Borel measures on G with convolution multiplication and total variation norm $\|\cdot\| . \quad M_{a}(G)$ and $M_{s}(G)$ express the space of absolutely continuous measures and the space of singular measures on G with respect to the Haar measure of G, respectively. For $\mu \in M(G), \hat{\mu}$ denotes the Fourier-Stieltjes transform of μ, and we put $B(\hat{G})=\{\hat{\mu} \mid \mu \in M(G)\}, A(\hat{G})=$ $\left\{\hat{\mu} \mid \mu \in M_{a}(G)\right\}, \quad B_{s}(\hat{G})=\left\{\hat{\mu} \mid \mu \in M_{s}(G)\right\} . \quad B(\hat{G}) \quad$ is a Banach algebra with respect to the pointwise multiplication and the norm $\|\hat{\mu}\|=\|\mu\|$.

Let Λ be a closed subgroup of \hat{G}. The following theorem is wellknown ([6]).

Theorem1. $\left.B(\hat{G})\right|_{\Lambda}=B(\Lambda),\left.A(\hat{G})\right|_{\Lambda}=A(\Lambda)$.
-It follows from theorem 1 that each member of $B(\Lambda)$ (resp. $A(\Lambda)$) can be lifted to a member of $B(\hat{G})$ (resp. $A(\hat{G})$), but it is not clear whether there exist any liftings which are linear maps from $B(\Lambda)$ to $B(\hat{G})$ (resp. from $A(\Lambda)$ to $A(\hat{G})$).

On the other hand, in the recent papers [4] and [5], we can find partial answers to this lifting problem.

Theorem 2 (cf. [4] and [5]). Let 1 be a discrete subgroup of \hat{G}, let H be the annihilator of Λ in G, and let W be a neighborhood of $0 \in \hat{G}$. Choose a neighborhood U of $0 \in \mathcal{G}$ and a probability measure $\rho \in M_{a}(G)$ such that $\operatorname{supp} \hat{\rho} \subset U \subset W$ and $(U-U) \cap \Lambda=\{0\}$, and put

$$
\hat{J} \hat{\mu}(\gamma)=\sum_{\alpha \in A} \hat{\mu}(\alpha) \hat{\rho}(\gamma-\alpha) \quad(\hat{\mu} \in B(\Lambda), \gamma \in \hat{G})
$$

Then we have $\hat{J} \hat{\mu} \in B(\hat{G})$ with the following additional properties.
i) $\left.\hat{\jmath} \hat{\mu}\right|_{A}=\hat{\mu}$,
ii): $\|\hat{J} \hat{\mu}\|=\|\hat{\mu}\|$,
(*) iii) $\hat{J} \hat{\mu}$ is positive definite if $\hat{\mu}$ is positive definite,

