Projective Γ -sets

By Tomoyuki YoshiDA (Received January 26, 1982)

The purpose of this paper is to study projective functors from a small category to the category of sets. Our results are generalizations of semigroup cases.

1. Some basic definitions and properties

Let \mathscr{S} be the category of sets and Γ a small category. We denote by \mathscr{S}^r the functor category from Γ to \mathscr{S} . Then an object in \mathscr{S}^r is called a *(right)* Γ -set and a morphism in \mathscr{S}^r is called a Γ -map. We denote the hom-set from i to j in Γ by $\Gamma(i, j)$. Furthermore throughout the paper, we denote the composition $X \xrightarrow{f} Y \xrightarrow{g} Z$ by $fg: X \to Z$. So a (right) Γ -set X consists of sets X_i , $i \in \Gamma$, which are called stalks at i, together with maps

 $X_i \times \Gamma(i, j) \longrightarrow X_j : (x_i, \alpha) \longmapsto x_i \cdot \alpha$

for $i, j \in \Gamma$ which satisfy the conditions :

(a) $x_i \cdot 1_i = x_i$ for $i \in \Gamma$, $x_i \in X_i$ and the identity 1_i ;

(b) $(x_i \cdot \alpha) \cdot \beta = x_i \cdot (\alpha \beta)$ for $x_i \in X_i$, $\alpha \in \Gamma(i, j)$, $\beta \in \Gamma(j, k)$.

Furthermore a Γ -map $f: X \to Y$ between Γ -sets is a family of maps $f_i: X_i \to Y_i, i \in \Gamma$, satisfying the condition $(x_i \cdot \alpha) f_j = (x_i f_i) \cdot \alpha$ for $i, j \in \Gamma, x_i \in X_i, \alpha \in \Gamma(i, j)$. The set of all Γ -maps of X to Y is denoted by $\Gamma(X, Y)$. We define analogously left Γ -sets which can be regarded as contravariant functor from Γ to \mathcal{S} . The category of Γ -sets, \mathcal{S}^r , is complete and cocomplete. In fact, limits and colimits of Γ -sets are constructed pointwise. A Γ -set X is called a *finite* Γ -set provided each stalk X_i is a finite set. The full subcategory of finite Γ -sets in \mathcal{S}^r is denoted by \mathcal{S}^r_f .

Any set A is regarded as a constant Γ -set defined by $A_i = A$ and $a \cdot \alpha = a$ for all $a \in A_i$, $\alpha \in \Gamma(i, j)$. For each $k \in \Gamma$, the hom-functor $H^k: i \mapsto \Gamma(k, i)$ is a Γ -set, which is called a *representable* Γ -set. Of course the map $H^k_i \times \Gamma(i, j) \to H^k_j: (\gamma, \alpha) \mapsto \gamma \alpha$ is defined by the compositions. If Γ is a finite category, that is, all morphisms in Γ makes a finite set, then H^k is a finite Γ set. It is well-known as the Yoneda Lemma that Γ -maps of H^k to X are bijectively corresponding with elements of X_k . The Yoneda embedding Y: $\Gamma^{op} \to \mathscr{S}^{\Gamma}: k \mapsto H^k$ is fully-faithful, and furthermore Y preserves and reflects