Some multipliers on the space consisting of measures of analytic type, II

By Hiroshi YAMAGUCHI

(Received January 5, 1983)

§ 0. Introduction

Let G be a LCA group with the dual group \hat{G} . m_G means the Haar measure of G. M(G) and $L^1(G)$ denote the measure algebra and the group algebra respectively. Let $M_s(G)$ be the closed subspace of M(G) consisting of the singular measures on G. For a subset E of \hat{G} , $M_E(G)$ denotes the space of measures in M(G) whose Fourier-Stieltjes transforms vanish off E. We denote by E^0 and E^- the interior and closure of E respectively. "^" and "[~]" denote the Fourier-Stieltjes transform and the inverse Fourier transform respectively. For a subset B of M(G), B[^] means a set { $\hat{\mu}: \mu \in B$ }. Let R be the reals and $H^1(R)$ the Hardy space on R. Then, by the F. and M. Riesz theorem, $H^1(R) = \{\mu \in M(R): \hat{\mu}(x) = 0 \text{ for } x < 0\}$. When there is a nontrivial continuous homomorphism $\psi: \hat{G} \mapsto R$, we define $M^a(G)$ by $M^a(G) = \{\mu \in M(G): \hat{\mu}(\gamma) = 0 \text{ for } \gamma \in \hat{G} \text{ with } \psi(\gamma) < 0\}$. If $\mu \in M^a(G)$, we say that μ is a measure of analytic type.

For compact abelian groups G, Doss proved that each multiplier on $M_s(G)$ is given by convolution with a discrete measure on G ([3]). In [5], Graham and MaLean obtained an analogous result for LCA groups. On the other hand, the author in ([10], Theorem 2.3) proved that $\Phi \circ \phi$ becomes a multiplier on $M^a(G)$ for each multiplier Φ on $L^1_{-s}(R)$ ($\delta > 0$), where $L^1_{-s}(R) = \{f \in L^1(R) : \hat{f}(x) = 0 \text{ for } x < -\delta\}$. However it is natural to consider whether $\Phi \circ \phi$ becomes a multiplier on $M^a(G)$ for each multiplier Φ on $H^1(R)$ or not. There are two purpose in this paper. One is to prove that $\Phi \circ \phi$ becomes a multiplier on $M^a(G)$ for each multiplier Φ on $H^1(R)$. The other is to improve Theorem 2.4 in [10]. We state our results after the following definition.

DEFINITION 0.1 Let E be a aubset of \hat{G} . A function Φ on \hat{G} which is continuous on E^0 is called a multiplier (or multiplier function) on $M_E(G)$ if $\Phi \hat{\mu} \in M_E(G)^{\wedge}$ for each $\mu \in M_E(G)$. By the function Φ , there exists a unique bounded linear operator S on $M_E(G)$ such that $S(\mu)^{\wedge} = \Phi \hat{\mu}$. Thus defined S is called a multiplier operator (or merely multiplier) on $M_E(G)$