On separation points of solutions to Prandtl boundary layer problem

By Shin'ya Matsui and Taira Shirota

(Received October 8, 1983)

1. Introduction

The equations for 2 -dimensional stationary boundary layer theory of incompressible fluid past a rigid wall are

$$
\begin{align*}
u u_{x}+v u_{y} & =\nu u_{y y}-p_{x}, \\
u_{x}+v_{y} & =0 \tag{1.1}
\end{align*}
$$

in the domain $D_{A}=\{(x, y) ; 0<x<A, 0<y<\infty\}$ (see [1], [8], [9], [10] and [11]). Here the subscripts x and y denote the partial differentiation with respect to the corresponding variable, (x, y) are orthogonal coordinates in the boundary layer with x representing the length along the wall and y the perpendicular distance from the wall, $u=u(x, y)$ and $v=v(x, y)$ are the corresponding unknown velocity components. The constant ν is a viscous coefficient. Finally $p=p(x)$ is a pressure function. Let $U=U(x)$ be an exterior streaming speed ; we assume that $p(x)$ and $U(x)$ satisfy the Bernoulli law and the origin $(0,0)$ is not a stagnation point, i. e.,

$$
\begin{gather*}
U(x) U_{x}(x)+p_{x}(x)=0, \tag{1.2}\\
U(0)>0
\end{gather*}
$$

The appropriate boundary conditions are

$$
\begin{align*}
& u=v=0 \text { for } y=0 \text { and } u(x, y) \longrightarrow U(x) \text { as } y \rightarrow \infty, \\
& \text { uniformly in } x \text { on any compact subset of }[0, A) . \tag{1.3}
\end{align*}
$$

In order to obtain a well-set problem, we suppose that at an initial position, say $x=0$, an initial datum $u_{0}(y)$ is assigned to the velocity component u, i. e.,

$$
\begin{equation*}
u(0, y)=u_{0}(y) \quad(0 \leq y<\infty) \tag{1.4}
\end{equation*}
$$

In this paper we study the existence of the separation point of the flow deterministically.

Hereafter, unless otherwise provided, we assume that the datum $u_{0}(y)$ belongs to $I^{2+\alpha}=I^{2+\alpha}(\nu, U)$ (for notations see Section 2) and that the speed $U(x)$ and the pressure gradient $p_{x}(x)$ have following properties:

