On the group of isometries of an affine homogeneous convex domain

By Tadashi Tsujı
(Received September 4, 1982 ; Revised February 7, 1983)

Introduction

Let Ω be a convex domain in the n-dimensional real number space \boldsymbol{R}^{n}, not containing any affine line, and let $G(\Omega)$ be the Lie group of all affine transformations on \boldsymbol{R}^{n} leaving the domain Ω invariant. If the group $G(\Omega)$ acts transitively on Ω, then Ω is said to be (affine) homogeneous. By using the characteristic function φ of Ω, we can define a $G(\Omega)$-invariant Riemannian metric g_{Ω} on Ω as follows :

$$
g_{\Omega}=\sum_{1 \leqslant i, j \leqslant n} \frac{\partial^{2} \log \varphi}{\partial x^{i} \partial x^{j}} d x^{i} d x^{j},
$$

where $\left(x^{1}, x^{2}, \cdots, x^{n}\right)$ denotes a system of affine coordinates on \boldsymbol{R}^{n}. The Riemannian metric g_{Ω} is called the canonical metric of Ω (cf. [7], [8]). A homogeneous convex domain is said to be reducible if it is affinely equivalent to a direct product of homogeneous convex domains. A homogeneous convex domain is said to be irreducible if it is not reducible. We note that a homogeneous convex cone is a special case of a homogeneous convex domain.

For a homogeneous convex domain Ω, we denote by $I(\Omega)$ the group of all isometries of the homogeneous Riemannian manifold $\left(\Omega, g_{\Omega}\right)$. Then, it has been proved that the groups $G(V)$ and $I(V)$ for an irreducible homogeneous convex cone V have the same connected component containing the identity element ([3], [6]).

The aim of the present paper is to extend the above result to homogeneous convex domains. Namely, we will prove the following statement: If a homogeneous convex domain Ω is irreducible and not affinely equivalent to an elementary domain, then the groups $G(\Omega)$ and $I(\Omega)$ have the same connected component containing the identity element (Theorem 6.1). The definition of an elementary domain will be given in §3. In order to prove the above result, we will need the theory of T-algebras developed by Vinberg [8], [9], and also, we will make use of the results obtained in [5], [6] and [7].

