On the group of isometries of an affine homogeneous convex domain

By Tadashi Tsuji

(Received September 4, 1982; Revised February 7, 1983)

Introduction

Let Ω be a convex domain in the *n*-dimensional real number space \mathbb{R}^n , not containing any affine line, and let $G(\Omega)$ be the Lie group of all affine transformations on \mathbb{R}^n leaving the domain Ω invariant. If the group $G(\Omega)$ acts transitively on Ω , then Ω is said to be (*affine*) homogeneous. By using the characteristic function φ of Ω , we can define a $G(\Omega)$ -invariant Riemannian metric g_{Ω} on Ω as follows:

$$g_{g} = \sum_{1 \leq i,j \leq n} rac{\partial^{2} \log \varphi}{\partial x^{i} \partial x^{j}} dx^{i} dx^{j}$$
 ,

where (x^1, x^2, \dots, x^n) denotes a system of affine coordinates on \mathbb{R}^n . The Riemannian metric g_g is called the *canonical metric* of Ω (cf. [7], [8]). A homogeneous convex domain is said to be *reducible* if it is affinely equivalent to a direct product of homogeneous convex domains. A homogeneous convex domain is said to be *irreducible* if it is not reducible. We note that a homogeneous convex cone is a special case of a homogeneous convex domain.

For a homogeneous convex domain Ω , we denote by $I(\Omega)$ the group of all isometries of the homogeneous Riemannian manifold (Ω, g_{g}) . Then, it has been proved that the groups G(V) and I(V) for an irreducible homogeneous convex cone V have the same connected component containing the identity element ([3], [6]).

The aim of the present paper is to extend the above result to homogeneous convex domains. Namely, we will prove the following statement: If a homogeneous convex domain Ω is irreducible and not affinely equivalent to an elementary domain, then the groups $G(\Omega)$ and $I(\Omega)$ have the same connected component containing the identity element (Theorem 6.1). The definition of an elementary domain will be given in § 3. In order to prove the above result, we will need the theory of T-algebras developed by Vinberg [8], [9], and also, we will make use of the results obtained in [5], [6] and [7].