An analytical proof of Kodaira's embedding theorem for Hodge manifolds

By Noboru Tanaka
(Received July, 8, 1983)

Introduction

The main purpose of the present paper is to give a purely analytical proof of a famous theorem due to Kodaira [4] which states that every Hodge manifold X can be holomorphically embedded in a complex projective space $P^{N}(\boldsymbol{C})$.

Our proof of the theorem is based on Kohn's harmonic theory on compact strongly pseudo-convex manifolds ([2] and [3]), and has been inspired by the proof due to Boutet de Monvel [1] of the fact that every compact strongly pseudo-convex manifold M can be holomorphically embedded in a complex affine space \boldsymbol{C}^{N}, provided $\operatorname{dim} M>3$. In this paper the differentiability will always mean that of class C^{∞}. Given a vector bundle E over a manifold $M, \Gamma(E)$ will denote the space of C^{∞} cross sections of E.

1. Let \widetilde{M} be an ($n-1$)-dimensional (para-compact) complex manifold, and F a holomorphic line bundle over \widetilde{M}. Let M^{\prime} be the holomorphic C^{*}. bundle associated with F, and π^{\prime} the projection $M^{\prime} \rightarrow \widetilde{M}$.

There are an open covering $\left\{U_{\alpha}\right\}$ of \widetilde{M} and for each α a holomorphic trivialization

$$
\phi_{\alpha}: \pi^{\prime-1}\left(U_{\alpha}\right) \ni \boldsymbol{z} \longrightarrow\left(\pi^{\prime}(\boldsymbol{z}), f_{\alpha}(\boldsymbol{z})\right) \in U_{\alpha} \times \boldsymbol{C}^{*} .
$$

We have

$$
f_{\alpha}(z a)=f_{\alpha}(z) a, z \in \pi^{\prime-1}\left(U_{\alpha}\right), a \in C^{*} .
$$

Let $\left\{g_{\alpha \beta}\right\}$ be the system of holomorphic transition functions associated with the trivializations ϕ_{α}. Then for any α and β with $U_{\alpha} \cap U_{\beta} \neq \phi$ we have

$$
f_{\alpha}(z)=g_{\alpha \beta}\left(\pi^{\prime}(z)\right) f_{\beta}(z), \quad z \in \pi^{\prime-1}\left(U_{\alpha} \cap U_{\beta}\right)
$$

Let us now consider a $U(1)$-reduction M of the C^{*}-bundle M^{\prime}. Let π denote the projection $M \rightarrow \widetilde{M}$. Then there is a unique positive function a_{α} on U_{α} such that

$$
\pi^{-1}\left(U_{\alpha}\right)=\left\{\left.z \in \pi^{\prime-1}\left(U_{\alpha}\right)| | f_{\alpha}(z)\right|^{2} a_{\alpha}\left(\pi^{\prime}(z)\right)=1\right\} .
$$

