An analytical proof of Kodaira's embedding theorem for Hodge manifolds

By Noboru TANAKA (Received July, 8, 1983)

Introduction

The main purpose of the present paper is to give a purely analytical proof of a famous theorem due to Kodaira [4] which states that every Hodge manifold X can be holomorphically embedded in a complex projective space $P^{N}(\mathbf{C})$.

Our proof of the theorem is based on Kohn's harmonic theory on compact strongly pseudo-convex manifolds ([2] and [3]), and has been inspired by the proof due to Boutet de Monvel [1] of the fact that every compact strongly pseudo-convex manifold M can be holomorphically embedded in a complex affine space \mathbb{C}^N , provided dim M>3. In this paper the differentiability will always mean that of class \mathbb{C}^{∞} . Given a vector bundle E over a manifold M, $\Gamma(E)$ will denote the space of \mathbb{C}^{∞} cross sections of E.

1. Let \widetilde{M} be an (n-1)-dimensional (para-compact) complex manifold, and F a holomorphic line bundle over \widetilde{M} . Let M' be the holomorphic C^* bundle associated with F, and π' the projection $M' \to \widetilde{M}$.

There are an open covering $\{U_{\alpha}\}$ of \widetilde{M} and for each α a holomorphic trivialization

$$\phi_{\alpha}: \pi'^{-1}(U_{\alpha}) \ni \mathbf{z} \longrightarrow (\pi'(\mathbf{z}), f_{\alpha}(\mathbf{z})) \in U_{\alpha} \times C^*$$
.

We have

$$f_{\alpha}(za) = f_{\alpha}(z)a, z \in \pi'^{-1}(U_{\alpha}), a \in C^*$$
.

Let $\{g_{\alpha\beta}\}$ be the system of holomorphic transition functions associated with the trivializations ϕ_{α} . Then for any α and β with $U_{\alpha} \cap U_{\beta} \neq \phi$ we have

$$f_{\alpha}(z) = g_{lphaeta}(\pi'(z)) f_{eta}(z), \ z \in \pi'^{-1}(U_{lpha} \cap U_{eta}) \ .$$

Let us now consider a U(1)-reduction M of the C^* -bundle M'. Let π denote the projection $M \to \widetilde{M}$. Then there is a unique positive function a_{α} on U_{α} such that

$$\pi^{-1}(U_{\alpha}) = \left\{ z \in \pi'^{-1}(U_{\alpha}) \middle| |f_{\alpha}(z)|^2 a_{\alpha}(\pi'(z)) = 1 \right\}.$$