Kernels associated with cylindrical measures on locally convex spaces

By Yasuji TAKAHASHI (Received August 8, 1983)

§ 1. Introduction

The present paper contains some results concerning kernels of cylindrical measures on locally convex spaces. The notion of kernel has been introduced by C. Borell [3].

Let E be a locally convex space, E^* be its topological dual space, μ be a cylindrical measure on E and $L: E^* \to L^0(\Omega, \Sigma, P)$ be a random linear functional associated with μ . The inverse image of the topology of the convergence in probability on $L^0(\Omega, \Sigma, P)$ under L is called the topology associated with μ and denoted by τ_{μ} ; τ_{μ} is a linear topology on E^* . The topological dual of (E^*, τ_{μ}) is called the kernel of μ and denoted by K_{μ} . Let τ be a linear topology on E^* . The cylindrical measure μ is called of type 0 with respect to τ if the random linear functional $L: (E^*, \tau) \to L^0(\Omega, \Sigma, P)$ is continuous, and μ is called of type p (for p>0) with respect to τ if the image of E^* under L is contained in $L^p(\Omega, \Sigma, P)$ and $L: (E^*, \tau) \to L^p(\Omega, \Sigma, P)$ is continuous. Then our main results are stated as follows.

Let E and F be locally convex spaces, T be a continuous linear mapping of F into E, τ be a linear topology on E^* and τ_k be the Mackey topology on F^* . Then it is shown that the adjoint mapping $T^*: (E^*, \tau) \rightarrow (F^*, \tau_k)$ can be factored through a subspace of $L^0(\Omega, \nu)$ for some probability space (Ω, ν) if and only if there exists a cylindrical measure μ on E of type 0 with respect to τ such that K_{μ} contains T(F). In this case, if F is quasi-complete or barrelled, then τ_k can be replaced by the strong topology $b(F^*, F)$. As a special case, we can give a characterization of L^0 -imbeddable spaces, which is similar to the results of S. Chevet [4] and Y. Okazaki [8]. For p > 0, it is also shown that if there exists a cylindrical measure μ on E of type pwith respect to τ such that K_{μ} contains T(F), then $T^*: (E^*, \tau) \rightarrow (F^*, \tau_k)$ can be factored through a subspace of $L^p(\Omega, \nu)$ for some probability space (Ω, ν) . In this case, if p=2, then the converse is also true. Here we are

The research by this author was partially supported by Grant-in-Aid for Scientific Research (No. 57540086), Ministry of Education.