Transformation equations and the special values of Shimura's zeta functions

By Koji Doi, Haruzo Hida and Yoshitaka Maeda
(Received April 16, 1984)

Introduction

As is well known, the study of the transformation equations for modular forms has one of its origins in Klein's work [5], and many authors, e.g., Kiepert [4], Hurwitz [3], Fricke [1] and Herglotz [2], did certain contributions in this theory. For a modular form h of weight k on the congruence subgroup $\Gamma_{0}(N)$ of $S L_{2}(\mathbf{Z})$, the transformation equation for h is defined by

$$
\Phi(X ; h)=\prod_{\alpha \in r_{0}\left(N \backslash \backslash L_{2}(\mathbb{Z})\right.}\left(X-\left.h\right|_{k} \alpha\right)=0,
$$

where $\left.h\right|_{k} \alpha$ denotes the usual action of $\alpha \in S L_{2}(\mathbf{Z})$ of weight k (for the notation, see $\S 1$). The above mentioned references are mainly concerned with $\Delta(N z)$ and related functions as h for the discriminant function Δ.

For a long time, the importance of the investigation of these equations has been in the mind of the first author of this paper.

Now recently, Shimura [11] proved the algebraicity at certain integers of the zeta function defined by

$$
D(s, f, g)=\sum_{n=1}^{\infty} a(n) b(n) n^{-s},
$$

where $f=\sum_{n=1}^{\infty} a(n) e(n z)(e(z)=\exp (2 \pi i z))$ is a primitive cusp form on $\Gamma_{0}(N)$ of weight k and $g=\sum_{n=0}^{\infty} b(n) e(n z)$ is an arithmetic modular form on $\Gamma_{0}(N)$ of weight l less than k. Then $D(m, f, g)$ for $(k+l) / 2-1<m<k$ is an algebraic number times the Petersson self inner product of f and a power of π. We take as h the product of g and a certain Eisenstein series $E_{R, N}^{*}$ which is utilized in his proof of the algebraicity of $D(m, f, g)$. Then the sum of μ-th power of all the roots of $\Phi(X ; h)=0$ can be expressed as a finite linear combination of primitive forms of level 1 with the coefficients $D\left(m, f, g^{\prime}\right)$ for $g^{\prime}=g^{\mu}\left(E_{\lambda, N}^{*}\right)^{\mu-1}$. In fact, we have

Theorem. For an arbitrary element $g \in S_{l}\left(\Gamma_{0}(N)\right)$ and for any positive integers μ and $\lambda>2$, we have

$$
\begin{equation*}
\operatorname{Tr}\left(g E_{R, N}^{*}\right)^{\mu}=c \sum_{f \in P(k \mu)} \frac{D\left(k \mu-1, f, g^{\mu}\left(E_{\lambda, N}^{*}\right)^{\mu-1}\right)}{\pi^{k \mu}\langle f, f\rangle} f \tag{i}
\end{equation*}
$$

