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Introduction

As is well known, the study of the transformation equations for modular
forms has one of its origins in Klein’s work [5], and many authors, e . g. ,
Kiepert [4], Hurwitz [3], Fricke [1] and Herglotz [2], did certain contribu-
tions in this theory. For a modular form h of weight k on the congruence
subgroup \Gamma_{0}(N) of SL_{2}(Z) , the transformation equation for h is defined by

\Phi(X;h)=I^{-}I_{\alpha\in r_{0}(N)\backslash SL_{2}(Z)}(X-h|_{k}\alpha)=0 ,

where h|_{k}\alpha denotes the usual action of \alpha\in SL_{2}(Z) of weight k (for the nota-
time, see \S 1). The above mentioned references are mainly concerned with
\Delta(Nz) and related functions as h for the discriminant function \Delta .

For a long time, the importance of the investigation of these equations
has been in the mind of the first author of this paper.

Now recently, Shimura [11] proved the algebraicity at certain integers
of the zeta function defined by

D(m,f, g)=\sum_{n- 1}^{\infty}a(n)b(n)n^{-s} ,

where f= \sum_{n=1}^{\infty}a(n)e(nz)(e(z)=\exp(2\pi iz)) is a primitive cusp form on \Gamma_{0}(N)

of weight k and g= \sum_{n=0}^{\infty}b(n)e(nz) is an arithmetic modular form on \Gamma_{0}(N)

of weight l less than k. Then D(m,f, g) for (k+l)/2-1<m<k is an alge-
braic number times the Petersson self inner product of f and a power of \pi .
We take as h the product of .q and a certain Eisenstein series E_{\lambda,N}^{*} which
is utilized in his proof of the algebraicity of D(m,f, g) . Then the sum of
\mu-th power of all the roots of \Phi(X;h)=0 can be expressed as a finite linear
combination of primitive forms of level 1 with the coefficients D(m,f, g’) for
g’=g^{\mu}(E_{\lambda,N}^{*})^{\mu-1} . In fact, we have

THEOREM. For an arbitrary element .q\in S_{l}(\Gamma_{0}(N)) and for any posi-
tive integers \mu and \lambda>2 , we have

(i) Tr (gE_{\lambda,N}^{*})^{\mu}=c \sum_{J\in P(k\mu)}\frac{D(k\mu-1,fg^{\mu}(E_{\lambda,N}^{*})^{\mu-1})}{\pi^{k\mu}\langle ff\rangle},,f


