Convex programming on spaces of measurable functions

By Shozo Koshi, Hang Chin Lai and Naoto Komuro (Received June 20, 1984)

1. Introduction. In [3] and [4], J. Zowe has considered convex programming with values in ordered vector spaces. His hypotheses are so restrictive that his theory does not apply to the case of the function spaces L_p $(\infty > p > 0)$. For L_{∞} and C(X) with X a Stonean space, his method is very useful. We shall consider in this note convex operators whose values are in much more general spaces than the usual function spaces such as L_p . Functions assuming the value $+\infty$ introduce certain complications, to which we must address ourselves.

For simplicity, we consider only convex operators defined on the real line \mathbb{R} with values in the space of measurable functions with values in $\mathbb{R} \cup \{+\infty\}$. The general case will be treated in a later publication.

In this note, we present a generalization of the Fenchel-Moreau theorem and also of the Fenchel theorem. It is appropriate to consider the $P(\Omega)$ of measurable functions, whose definition will be found in Section 2.

2. Preliminary lemmas

Let F be an extended real-valued function on the real numbers $I\!\!R$, possibly assuming the value $+\infty$, but not the value $-\infty$. Let D be a (dense) countable subfield of $I\!\!R$. Such an extended real-valued function F defined on D is said to be *D*-convex if

 $F(\alpha x + \beta y) \leq \alpha F(x) + \beta F(y)$

for $\alpha, \beta \in D$ with $\alpha + \beta = 1, \alpha, \beta \ge 0$ and $x, y \in D$.

An *IR*-convex function will be called convex, as usual.

We first present a number of lemmas.

LEMMA 1. Every finite-valued D-convex function defined on D is continuous in D: that is $x_n \rightarrow x(x_n, x \in D)$ implies that $F(x_n) \rightarrow F(x)$.

PROOF. If the sequence $F(x_n)$ does not converge for $x_n \rightarrow x$, the convexity of F implies that either $F(y) = +\infty$ for all y > x or $F(y) = +\infty$ for all y < x. Since F is finite-valued, F is continuous.

Curiously enough, a *D*-convex function *F* defined on all of **I***R*, i. e. a function satisfying $F(\alpha x + \beta y) \leq \alpha F(x) + \beta F(y)$ for $\alpha, \beta \in D$ with $\alpha + \beta = 1$, $\alpha, \beta \geq 0$ and $x, y \in \mathbf{I}$ *R*, is not necessarily continuous on **I***R*. (For example, a