On the generalization of the theorem of Helson and Szegö

By Takanori YAMAMOTO (Received May 2, 1984)

1. Introduction and Theorem A.

T denotes the unit circle, i. e. $T = \{\xi; |\xi| = 1\}$ while *Z* denotes the set of all integers. The normalized Lebesgue measure on *T* is denoted by *m*, i. e. $dm(\xi) = \frac{d\theta}{2\pi}$ for $\xi = e^{i\theta}$. Let χ stand for the identity function on *T*, i. e. χ $(\xi) = \xi$. We shall use also $\chi_k(\xi) = \chi(\xi)^k = \xi^k$ for $k \in \mathbb{Z}$. For $p = 1, 2, L^p = L^p$ (*T*) is the Banach space of measurable functions *f* on *T* whose *p*-th power is *m*-integrable. The space L^p is equipped with the norm $||f||_p = \{\int_T |f(\xi)|^p dm$ $(\xi)\}^{1/p}$. $L^{\infty} = L^{\infty}(T)$ is the space of essentially *m*-bounded functions *f* with the norm $||f||_{\infty} = \exp |f(\xi)|$. C = C(T) is the space of continuous functions *f* on *T* with the norm $||f||_{\infty} = \max_{\xi \in T} |f(\xi)|$.

Given a f in L^1 , its k-th Fourier coefficient $\hat{f}(k)$ is defined by $\hat{f}(k) = \int_T \chi_{-k}(\xi) f(\xi) dm(\xi)$ for $k \in \mathbb{Z}$. For $p=1, 2, \infty$, the Hardy space H^p (resp. the disc algebra A) is the closed subspace of functions f in L^p (resp. C) for which $\hat{f}(k) = 0$ for all $k \leq -1$. A function f in H^1 is called outer if

$$\log |\int_T f(\zeta) dm(\zeta)| = \int_T \log |f(\zeta)| dm(\zeta).$$

A function f in H^{∞} is called inner if $|f(\zeta)| = 1$ a. e. on T. The subspace spanned by the functions χ_k , $k \in \mathbb{Z}$ which we call trigonometric polynomials is denoted by \mathscr{P} . The subspace spanned by the functions χ_k , $k \ge 0$ which we call analytic polynomials is denoted by \mathscr{P}_+ . For a natural number n, the subspace spanned by the functions χ_k , $k \le -n$ is denoted by \mathscr{P}_-^n . We shall use also $\mathscr{P}_- = \mathscr{P}_-^1$. The analytic projection P_+ from \mathscr{P} onto \mathscr{P}_+ is defined by $P_+f = \sum_{k\ge 0} f(k)\chi_k$ for $f \in \mathscr{P}$. Let $P_- = I - P_+$ where I is the identity operator on \mathscr{P} . For complex valued Borel functions $\alpha(\zeta)$ and $\beta(\zeta)$, we study the linear operator $\alpha P_+ + \beta P_-$ which includes the analytic projection P_+ and the Hilbert transform $H = -iP_+ + iP_-$. Let μ be a finite positive regular Borel measure on T whose Lebesgue decomposition is $d\mu = W \ dm + d\mu_s$. For a constant M > 0, the set of the finite positive regular Borel measures ν on T which