# On the curvature of Riemannian submanifolds of codimension 2 

By Yoshio Agaoka<br>(Received September 1, 1984 ; Revised November 29, 1984)

## Introduction

Let $(M, g)$ be an $n$-dimensional Riemannian manifold which is isometrically immersed into the $n+k$-dimensional Euclidean space $\boldsymbol{R}^{n+k}$. Then the curvature transformation $R$ of ( $M, g$ ) satisfies the condition (*) rank $R(X, Y) \leqq 2 k$
for any tangent vectors $X, Y \in T_{x} M$, where we consider $R(X, Y)$ as a linear endomorphism of $T_{x} M$. Using this condition, Agaoka and Kaneda gave in [4] some estimates on the dimension of the Euclidean space into which Riemannian symmetric spaces can be locally isometrically immersed. For example they proved that the complex projective space $P^{n}(\boldsymbol{C})$ cannot be locally isometrically immersed in codimension $n-1$. But if $k \geqq(n-1) / 2$, the condition (*) does not impose any restrictions on the curvature of $n$-dimensional Riemannian submanifolds of $\boldsymbol{R}^{n+k}$.

Our first purpose of this paper is, using the representation theory of $G L$ ( $n, \boldsymbol{R}$ ), to determine the polynomial relations of the curvature tensor of $M^{n}$ $\subset \boldsymbol{R}^{n+k}$, up to degree 3 explicitly (Theorem 1.4) and to find a new condition on the curvature tensor which serves as the obstruction in the cases $M^{4} \subset \boldsymbol{R}^{6}$ and $M^{5} \subset \boldsymbol{R}^{7}$. (See $\S 1$ and $\S 2$. Note that in these cases, the inequality (*) reduces to a trivial condition.) Our second purpose is to express this new relation appeared in degree 3 in a simple form which is easy to calculate (Proposition 3.3, Theorem 3.4). As applications of this curvature relation, we prove that Riemannian symmetric spaces $P^{2}(\boldsymbol{C}), S U(3) / S O(3)$ and their non-compact dual spaces cannot be isometrically immersed in codimension 2 even locally (Corollary 3.5). As for $P^{2}(\boldsymbol{C})$ and its dual space, this result can be proved, using the theorems in Ôtsuki [18] and Weinstein [23] (see Remark (1) after Corollary 3.5). But, as for $S U(3) / S O(3)$ and its dual space, this is a new result, which cannot be obtained by a previously known method.

Now we explain our method briefly. Let $V$ be an $n$-dimensional real vector space and let $K$ be the space of curvature like tensors on $V$ (see $§ 1$ ). We define a quadratic map $\gamma_{k}: S^{2} V^{*} \otimes \boldsymbol{R}^{k} \longrightarrow K$ by

