On the curvature of Riemannian submanifolds of codimension 2

By Yoshio AGAOKA (Received September 1, 1984; Revised November 29, 1984)

Introduction

Let (M, g) be an *n*-dimensional Riemannian manifold which is isometrically immersed into the n+k-dimensional Euclidean space \mathbb{R}^{n+k} . Then the curvature transformation R of (M, g) satisfies the condition (*) rank $R(X, Y) \leq 2k$ for any tangent vectors $X, Y \in T_x M$, where we consider R(X, Y) as a linear endomorphism of $T_x M$. Using this condition, Agaoka and Kaneda gave in [4] some estimates on the dimension of the Euclidean space into which Riemannian symmetric spaces can be locally isometrically immersed. For example they proved that the complex projective space $P^n(C)$ cannot be locally isometrically immersed in codimension n-1. But if $k \geq (n-1)/2$, the condition (*) does not impose any restrictions on the curvature of n-dimensional Riemannian submanifolds of \mathbb{R}^{n+k} .

Our first purpose of this paper is, using the representation theory of GL (n, \mathbf{R}) , to determine the polynomial relations of the curvature tensor of $M^n \subset \mathbf{R}^{n+k}$, up to degree 3 explicitly (Theorem 1.4) and to find a new condition on the curvature tensor which serves as the obstruction in the cases $M^4 \subset \mathbf{R}^6$ and $M^5 \subset \mathbf{R}^7$. (See §1 and §2. Note that in these cases, the inequality (*) reduces to a trivial condition.) Our second purpose is to express this new relation appeared in degree 3 in a simple form which is easy to calculate (Proposition 3.3, Theorem 3.4). As applications of this curvature relation, we prove that Riemannian symmetric spaces $P^2(\mathbf{C})$, SU(3)/SO(3) and their non-compact dual spaces cannot be isometrically immersed in codimension 2 even locally (Corollary 3.5). As for $P^2(\mathbf{C})$ and its dual space, this result can be proved, using the theorems in Ôtsuki [18] and Weinstein [23] (see Remark (1) after Corollary 3.5). But, as for SU(3)/SO(3) and its dual space, this is a new result, which cannot be obtained by a previously known method.

Now we explain our method briefly. Let V be an *n*-dimensional real vector space and let K be the space of curvature like tensors on V (see §1). We define a quadratic map $\gamma_k : S^2 V^* \otimes \mathbf{R}^k \longrightarrow K$ by