On the number of irreducible characters in a finite group II

Dedicated to Professor Hirosi Nagao on his 60th birthday

By Tomoyuki WADA (Received November 27, 1984)

§1 Introduction.

Let *F* be an algebraically closed field of characteristic *p*, and *G* be a finite group with a Sylow *p*-subgroup *P*. Let *B* be a block ideal of the group algebra *FG* which can be regarded as an indecomposable direct summand of *FG* as an $F(G \times G)$ -module. We denote by k(B) and l(B) the number of irreducible ordinary and modular characters in *B*, respectively. In [8] the author introduced two invariants m(B) and n(B) associated with *B* that is the number of indecomposable direct summands of $B_{\Delta(P)}$ and $B_{P \times P}$, where Δ is the diagonal map from *G* to $G \times G$. We obtained some relations among four invariants k(B), l(B), m(B) and n(B), and it turned out that relation between m(B) and n(B) has a strong resemblance to that between k(B) and l(B). Furthermore, in [9] we proved that $l(B) \leq n(B)$ and investigate the structure of *B* when equality holds. In this paper we will show that $|P:D|k(B) \leq m(B)$ if a defect group *D* of *B* is contained in the center of *P*.

Let us set $|P| = p^a$, $|D| = p^d$ and $\dim_F B = p^{2a-d}v(B)$, where v(B) = u $(B)^2w(B)$ is the *p*'-number mentioned in [2] and [8]. Then our results can be written as the following diagram,

