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1. Introduction

Let n\geq 3 and \Omega be an open domain in R^{n} with a bounded complement and
boundary \partial\Omega assumed real analytic and connected. Consider the mixed
problem

n

(1. 1) \{

( \partial_{t}-\sum_{j=1}A_{j}\partial_{x_{j}})u=0 on (0, \infty)\cross\Omega ,

\Lambda(x)u=0 on (0, \infty)\cross\partial\Omega ,

u(0, x)=f(x) .

where A_{j} , \Lambda(x) are (r\cross r) matrices, \Lambda(x) is real analytic and f(x)\in L^{2}

(\Omega ; C^{r}) . We shall assume the following conditions fulfilled

(H_{1}) A_{j} are constant Hermittian matrices,
n

(H_{2})\{
the eigenvalues of the matrix A( \xi)=\sum_{j=1}A_{j}\xi_{j}

have constant multiplicity for \xi\in R^{n}|_{1}^{j}0 }.

The above conditions show that the dimension q of the positive eigenspace of
the matrix A(\xi) is equal to the dimension of the negative eigenspace. The
boundary condition will be assumed maximal dissipative one, i . e .

(H3) \{

a) <A(\nu(x))u, u>\leq 0 for u\in Ker\Lambda(x) , x\in\partial\Omega ,

b) Ker\Lambda(x) is the maximal subspace in C^{r},

satisfying the condition a).

Here \nu(x) is the unit normal at x\in\partial\Omega pointed into K=R^{n}|\Omega , < > is the
inner product in C^{r}. Moreover, we shall assume the boundary condition
coercive (see [5]-[7] , [18] for the precise definition). It is well known
(see [12], [15], [18]) that the above conditions are valid for a wide class
important physical problems such as the Maxwell’s equations, accoustic
wave equation, Pauli, Dirac’s equations etc.

In this work we study the disappearing solutions (D. S.) to the problem


