A Class of Functions Defined by Using Hadamard Product

Shigeyoshi Owa and O. P. Ahuja
(Received January 10, 1985, Revised December 17, 1985)

Abstract

We introduce a class $\boldsymbol{P}_{\alpha}[\beta, \gamma]$ of functions defined by using Hadamard product $f * S_{\alpha}(z)$ of $f(z)$ and $S_{\alpha}(z)=z /(1-z)^{2(1-\alpha)}$. The object of the present paper is to determine extreme points, coefficient inequalities, distortion theorems, and radii of starlikeness and convexity for functions in $\boldsymbol{P}_{\alpha}[\beta, \gamma]$. Further, we give distortion theorems for fractional calculus of functions belonging to the class $\boldsymbol{P}_{\alpha}[\beta, \gamma]$.

1. Introduction

Let \boldsymbol{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $\boldsymbol{U}=\{z:|z|<1\}$. And let \boldsymbol{S} denote the subclass of \boldsymbol{A} consisting of analytic and univalent functions $f(z)$ in the unit disk \boldsymbol{U}. A function $f(z)$ in \boldsymbol{S} is said to be starlike of order α if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in U) \tag{1.2}
\end{equation*}
$$

for some $\boldsymbol{\alpha}(0 \leqq \boldsymbol{\alpha}<1)$. We denote by $\boldsymbol{S}^{*}(\boldsymbol{\alpha})$ the class of all starlike functions of order α. Further, a function $f(z)$ in S is said to be convex of order α if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(z \in \boldsymbol{U}) \tag{1.3}
\end{equation*}
$$

for some $\boldsymbol{\alpha}(0 \leqq \alpha<1)$. And we denote by $\boldsymbol{K}(\boldsymbol{\alpha})$ the class of all convex functions of order α. It is well-known that $f(z) \in \boldsymbol{K}(\alpha)$ if and only if $z f^{\prime}(z)$ $\in \boldsymbol{S}^{*}(\alpha)$, and that $\boldsymbol{S}^{*}(\alpha) \subseteq \boldsymbol{S}^{*}(0) \equiv \boldsymbol{S}^{*}$, and $\boldsymbol{K}(\alpha) \subseteq \boldsymbol{K}(0) \equiv \boldsymbol{K}$ for $0 \leqq \alpha<1$.

These classes $\boldsymbol{S}^{*}(\boldsymbol{\alpha})$ and $\boldsymbol{K}(\boldsymbol{\alpha})$ were first introduced by Rebertson [9],

