A Class of Functions Defined by Using Hadamard Product

Shigeyoshi OwA and O. P. AHUJA (Received January 10, 1985, Revised December 17, 1985)

Abstract

We introduce a class $P_{\alpha}[\beta, \gamma]$ of functions defined by using Hadamard product $f * S_{\alpha}(z)$ of f(z) and $S_{\alpha}(z) = z/(1-z)^{2(1-\alpha)}$. The object of the present paper is to determine extreme points, coefficient inequalities, distortion theorems, and radii of starlikeness and convexity for functions in $P_{\alpha}[\beta, \gamma]$. Further, we give distortion theorems for fractional calculus of functions belonging to the class $P_{\alpha}[\beta, \gamma]$.

1. Introduction

Let A denote the class of functions of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk $U = \{z : |z| < 1\}$. And let S denote the subclass of A consisting of analytic and univalent functions f(z) in the unit disk U. A function f(z) in S is said to be starlike of order α if

(1.2)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha$$
 $(z \in U)$

for some $\alpha (0 \le \alpha < 1)$. We denote by $S^*(\alpha)$ the class of all starlike functions of order α . Further, a function f(z) in S is said to be convex of order α if

(1.3)
$$\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \alpha \qquad (z \in U)$$

for some $\alpha(0 \le \alpha < 1)$. And we denote by $K(\alpha)$ the class of all convex functions of order α . It is well-known that $f(z) \in K(\alpha)$ if and only if $zf'(z) \in S^*(\alpha)$, and that $S^*(\alpha) \subseteq S^*(0) \equiv S^*$, and $K(\alpha) \subseteq K(0) \equiv K$ for $0 \le \alpha < 1$.

These classes $S^*(\alpha)$ and $K(\alpha)$ were first introduced by Rebertson [9],

This research was completed at the University of Victoria while the first author was on study leave from Kinki University, Osaka, Japan.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 30C45, 26A24.